导数的几何意义.ppt
上传人:天马****23 上传时间:2024-09-11 格式:PPT 页数:32 大小:1.7MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

导数的几何意义.ppt

导数的几何意义.ppt

预览

免费试读已结束,剩余 22 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

切线斜率确定1.本节切线的定义与以前学过的切线的定义有什么不同?提示:本节中切线是利用割线的极限位置定义的,适用于任何曲线,以前学的切线是从直线与具体曲线的交点个数来定义的.2.若函数y=f(x)在点x0处的导数存在,则曲线y=f(x)在点P(x0,f(x0))的切线方程是什么?提示:∵k=f′(x0),∴根据直线的点斜式方程,得切线方程为y-f(x0)=f′(x0)(x-x0).3.函数y=f(x)的部分图像如图,根据导数的几何意义,你能比较f′(x1)、f′(x2)和f′(x3)的大小吗?提示:根据导数的几何意义,因为在A,B处的切线斜率大于零且kA>kB,在C处的切线斜率小于零,所以f′(x1)>f′(x2)>f′(x3).4.f′(x0)与f′(x)的区别是什么?提示:f′(x)是函数f(x)的导函数,是一个确定的函数,f′(x0)表示的是函数f(x)在x=x0处的导数,是一个确定的常数,也是函数f′(x)在x=x0时的函数值.本题所求的切线方程与曲线C是否还有其他的公共点吗?为什么?利用导数的几何意义求切线方程的方法:(1)若已知点(x0,y0)在已知曲线上,则先求出函数y=f(x)在点x0处的导数,然后根据直线的点斜式方程,得切线方程y-y0=f′(x0)(x-x0).(2)若题中所给的点(x0,y0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.[例2]已知抛物线y=2x2+1,求(1)抛物线上哪一点的切线的倾斜角为45°?(2)抛物线上哪一点的切线平行于直线4x-y-2=0?(3)抛物线上哪一点的切线垂直于直线x+8y-3=0?解决此类问题的步骤为:(1)先设切点坐标(x0,y0);(2)求导数f′(x);(3)求切线的斜率f′(x0);(4)由斜率间的关系列出关于x0的方程,求出x0;(5)由于点(x0,y0)在曲线f(x)上,将(x0,y0)代入求得y0的值得切点坐标(x0,y0).2.已知曲线y=2x2+a在点P处的切线方程为8x-y-15=0,求切点P的坐标和实数a的值.[例3]如图,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB在直线l左侧部分的面积为S,则函数S=f(x)的图像为下图中的()[自主解答]函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图像是上升的,且图像是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图像是上升的,且图像是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图像为平行于x轴的射线.[答案]D函数在每一点处的切线斜率的变化情况反映函数在相应点处的变化情况,由切线的倾斜程度,可以判断出函数升降的快慢.因此,研究复杂的函数问题,可以考虑通过研究其切线来了解函数的性质.3.函数y=f(x)的图像如图所示,根据图像比较曲线y=f(x)在x=x1,x=x2附近的变化情况.解:当x=x1时,曲线y=f(x)在点(x1,f(x1))处的切线l1的斜率f′(x1)>0,因此在x=x1附近曲线呈上升趋势,即函数y=f(x)在x=x1附近单调递增.同理,函数y=f(x)在x=x2附近单调递增,但是,直线l1的倾斜程度小于直线l2的倾斜程度,这表明曲线y=f(x)在x=x1附近比在x=x2附近上升得缓慢.求过点P(3,5)且与曲线y=x2相切的直线方程.[尝试]