《全等三角形的判定》教案(精品多篇).docx
上传人:lj****88 上传时间:2024-09-13 格式:DOCX 页数:13 大小:17KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

《全等三角形的判定》教案(精品多篇).docx

《全等三角形的判定》教案(精品多篇).docx

预览

免费试读已结束,剩余 3 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《全等三角形的判定》教案(精品多篇)[引言]《全等三角形的判定》教案(精品多篇)为的会员投稿推荐,但愿对你的学习工作带来帮助。《全等三角形的判定》教案篇一教学目标:1、知识目标:(1)熟记边角边公理的内容;(2)能应用边角边公理证明两个三角形全等。2、能力目标:(1)通过“边角边”公理的运用,提高学生的逻辑思维能力;(2)通过观察几何图形,培养学生的识图能力。3、情感目标:(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。教学重点:学会运用公理证明两个三角形全等。教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。教学用具:直尺、微机教学方法:自学辅导式教学过程:1、公理的发现(1)画图:(投影显示)教师点拨,学生边学边画图。(2)实验让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)这里一定要让学生动手操作。(3)公理启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)作用:是证明两个三角形全等的依据之一。应用格式:强调:1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。3、平面几何中常要证明角相等和线段相等,其证明常用方法:证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。证线段相等的`方法――中点定义;全等三角形的对应边相等;等式性质。2、公理的应用(1)讲解例1。学生分析完成,教师注重完成后的总结。分析:(设问程序)“SAS”的三个条件是什么?已知条件给出了几个?由图形可以得到几个条件?解:(略)(2)讲解例2投影例2:例2如图2,AE=CF,AD∥BC,AD=CB,求证:学生思考、分析,适当点拨,找学生代表口述证明思路让学生在练习本上定出证明,一名学生板书。教师强调证明格式:用大括号写出公理的三个条件,最后写出结论。(3)讲解例3(投影)证明:(略)学生分析思路,写出证明过程。(投影展示学生的作业,教师点评)(4)讲解例4(投影)证明:(略)学生口述过程。投影展示证明过程。教师强调证明线段相等的几种常见方法。(5)讲解例5(投影)证明:(略)学生思考、分析、讨论,教师巡视,适当参与讨论。师生共同讨论后,让学生口述证明思路。教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。3、课堂小结:(1)判定三角形全等的方法:SAS(2)公理应用的书写格式(3)证明线段、角相等常见的方法有哪些?让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。6、布置作业a书面作业P56#6、7b上交作业P57B组1思考题:板书设计:探究活动《全等三角形的判定》教案篇二【教学目标】1.使学生理解边边边公理的内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;2.继续培养学生画图、实验,发现新知识的能力。【重点难点】1.难点:让学生掌握边边边公理的内容和运用公理的自觉性;2.重点:灵活运用SSS判定两个三角形是否全等。【教学过程】一、创设问题情境,引入新课请问同学,老师在黑板上画得两个三角形,△ABC与△全等吗?你是如何判定的(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等。)上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等。满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究。二、实践探索,总结规律1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段、、,分别为、、,你能画出这个三角形吗?先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。步骤:(1)画一线段AB使它的'长度等于c(4.8cm).(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.(3)连结AC、BC.△ABC即为所求把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?换三条线段,再试试看,是否有同样的结论请你结合画图、对比,说说你发现了什么?同学们各抒己见,教师总结:给定三条线段,如果它们能组成三角形,那么所画的三角形都是