2022年东莞市重点中学数学九上期末考试试题含解析.doc
上传人:天马****23 上传时间:2024-09-15 格式:DOC 页数:21 大小:1.9MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2022年东莞市重点中学数学九上期末考试试题含解析.doc

2022年东莞市重点中学数学九上期末考试试题含解析.doc

预览

免费试读已结束,剩余 11 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一元二次方程x2-2x+1=0的根的情况是()A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根2.如图,菱形中,过顶点作交对角线于点,已知,则的大小为()A.B.C.D.3.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定4.若,则下列等式一定成立的是()A.B.C.D.5.若二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,则c应满足的条件是()A.c=0B.c=1C.c=0或c=1D.c=0或c=﹣16.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=40°,则∠BAD为()A.40°B.50°C.60°D.70°7.已知正比例函数y=kx的图象经过第二、四象限,则一次函数y=kx﹣k的图象可能是图中的()A.B.C.D.8.如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为()A.106°B.116°C.126°D.136°9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.10.若方程x2+3x+c=0有实数根,则c的取值范围是()A.c≤B.c≤C.c≥D.c≥二、填空题(每小题3分,共24分)11.将抛物线向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是_____.12.已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于________厘米.13.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=110°,则∠α=.14.如图,平行四边形ABCD的一边AB在x轴上,长为5,且∠DAB=60°,反比例函数y=和y=分别经过点C,D,则AD=_____.15.如图,直线y=-x+b与双曲线分别相交于点A,B,C,D,已知点A的坐标为(-1,4),且AB:CD=5:2,则m=_________.16.如图,在等腰直角△ABC中,∠C=90°,将△ABC绕顶点A逆时针旋转80°后得到△AB′C′,则∠CAB′的度数为_____.17.一圆锥的母线长为5,底面半径为3,则该圆锥的侧面积为________.18.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径为______寸.三、解答题(共66分)19.(10分)如图,小巷左右两侧是竖直的墙,一架梯子AC斜靠在右墙,测得梯子与地面的夹角为45°,梯子底端与墙的距离CB=2米,若梯子底端C的位置不动,再将梯子斜靠在左墙,测得梯子与地面的夹角为60°,则此时梯子的顶端与地面的距离A'D的长是多少米?(结果保留根号)20.(6分)已知:如图,中,平分,是上一点,且.判断与的数量关系并证明.21.(6分)对于平面直角坐标系中的点和半径为1的,定义如下:①点的“派生点”为;②若上存在两个点,使得,则称点为的“伴侣点”.应用:已知点(1)点的派生点坐标为________;在点中,的“伴侣点”是________;(2)过点作直线交轴正半轴于点,使,若直线上的点是的“伴侣点”,求的取值范围;(3)点的派生点在直线,求点与上任意一点距离的最小值.22.(8分)(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)23.(8分)已知在△ABC中,
立即下载