如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
线面垂直得证明中得找线技巧通过计算,运用勾股定理寻求线线垂直1如图1,在正方体中,为得中点,AC交BD于点O,求证:平面MBD.证明:连结MO,,∵DB⊥,DB⊥AC,,∴DB⊥平面,而平面∴DB⊥.设正方体棱长为,则,.在Rt△中,.∵,∴.∵OM∩DB=O,∴⊥平面MBD.评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明.利用面面垂直寻求线面垂直2如图2,就是△ABC所在平面外得一点,且PA⊥平面ABC,平面PAC⊥平面PBC.求证:BC⊥平面PAC.证明:在平面PAC内作AD⊥PC交PC于D.因为平面PAC⊥平面PBC,且两平面交于PC,平面PAC,且AD⊥PC,由面面垂直得性质,得AD⊥平面PBC.又∵平面PBC,∴AD⊥BC.∵PA⊥平面ABC,平面ABC,∴PA⊥BC.∵AD∩PA=A,∴BC⊥平面PAC.(另外还可证BC分别与相交直线AD,AC垂直,从而得到BC⊥平面PAC).评注:已知条件就是线面垂直与面面垂直,要证明两条直线垂直,应将两条直线中得一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级得垂直关系中蕴含着低一级得垂直关系,通过本题可以瞧到,面面垂直线面垂直线线垂直.一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直线面垂直面面垂直.这三者之间得关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.下面举例说明.3如图1所示,ABCD为正方形,⊥平面ABCD,过且垂直于得平面分别交于.求证:,.证明:∵平面ABCD,∴.∵,∴平面SAB.又∵平面SAB,∴.∵平面AEFG,∴.∴平面SBC.∴.同理可证.评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直得转化中,平面起到了关键作用,同学们应多注意考虑线与线所在平面得特征,从而顺利实现证明所需要得转化.4如图2,在三棱锥A-BCD中,BC=AC,AD=BD,作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD.证明:取AB得中点F,连结CF,DF.∵,∴.∵,∴.又,∴平面CDF.∵平面CDF,∴.又,,∴平面ABE,.∵,,,∴平面BCD.评注:本题在运用判定定理证明线面垂直时,将问题转化为证明线线垂直;而证明线线垂直时,又转化为证明线面垂直.如此反复,直到证得结论.5如图3,就是圆O得直径,C就是圆周上一点,平面ABC.若AE⊥PC,E为垂足,F就是PB上任意一点,求证:平面AEF⊥平面PBC.证明:∵AB就是圆O得直径,∴.∵平面ABC,平面ABC,∴.∴平面APC.∵平面PBC,∴平面APC⊥平面PBC.∵AE⊥PC,平面APC∩平面PBC=PC,∴AE⊥平面PBC.∵平面AEF,∴平面AEF⊥平面PBC.评注:证明两个平面垂直时,一般可先从现有得直线中寻找平面得垂线,即证线面垂直,而证线面垂直则需从已知条件出发寻找线线垂直得关系.6、空间四边形ABCD中,若AB⊥CD,BC⊥AD,求证:AC⊥BD证明:过A作AO⊥平面BCD于O同理BC⊥DO∴O为△ABC得垂心7、证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D证明:连结ACAC为A1C在平面AC上得射影8、如图,平面ABCD,ABCD就是矩形,M、N分别就是AB、PC得中点,求证:、证:取PD中点E,则9如图在ΔABC中,AD⊥BC,ED=2AE,过E作FG∥BC,且将ΔAFG沿FG折起,使∠A'ED=60°,求证:A'E⊥平面A'BC分析:弄清折叠前后,图形中各元素之间得数量关系与位置关系。解:∵FG∥BC,AD⊥BC∴A'E⊥FG∴A'E⊥BC设A'E=a,则ED=2a由余弦定理得:A'D2=A'E2+ED2-2•A'E•EDcos60°=3a2∴ED2=A'D2+A'E2∴A'D⊥A'E∴A'E⊥平面A'BC10如图,在空间四边形SABC中,SA平面ABC,ABC=90,ANSB于N,AMSC于M。求证:①ANBC;②SC平面ANM分析:①要证ANBC,转证,BC平面SAB。②要证SC平面ANM,转证,SC垂直于平面ANM内得两条相交直线,即证SCAM,SCAN。要证SCAN,转证AN平面SBC,就可以了。证明:①∵SA平面ABC∴SABCﻩﻩ又∵BCAB,且ABSA=A∴BC平面SAB∵AN平面SABﻩ∴ANBC②∵ANBC,ANSB,且