中考数学压轴题精选(一)及答案优秀名师资料(完整版)资料.doc
上传人:天马****23 上传时间:2024-09-10 格式:DOC 页数:174 大小:6.9MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

中考数学压轴题精选(一)及答案优秀名师资料(完整版)资料.doc

中考数学压轴题精选(一)及答案优秀名师资料(完整版)资料.doc

预览

免费试读已结束,剩余 164 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

中考数学压轴题精选(一)及答案优秀名师资料(完整版)资料(可以直接使用,可编辑优秀版资料,欢迎下载)2021中考数学压轴题精选(一)★★1、(2021北京)在平面直角坐标系xOy中,抛物线y=x2xm23m2与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上。(1)求点B的坐标;(2)点P在线段OA上,从O点出发向点运动,过P点作x轴的垂线,与直线OB交于点E。延长PE到点D,使得ED=PE,以PD为斜边在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。过Q点作x轴的垂线,与直线AB交于点F。延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动)。若P点运动到t秒时,两个等腰直角三角形分别有一条直角边恰好落在同一条直线上,求此刻t的值。xyO11★★2、(2021北京)问题:已知△ABC中,BAC=2ACB,点D是△ABC内的一点,且AD=CD,BD=BA。探究DBC与ABC度数的比值。请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明。(1)当BAC=90时,依问题中的条件补全右图。观察图形,AB与AC的数量关系为;当推出DAC=15时,可进一步推出DBC的度数为;可得到DBC与ABC度数的比值为;(2)当BAC90时,请你画出图形,研究DBC与ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明。ACB★★3、(2021郴州)如图(1),抛物线与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线与抛物线交于点B、C.(1)求点A的坐标;(2)当b=0时(如图(2)),与的面积大小关系如何?当时,上述关系还成立吗,为什么?(3)是否存在这样的b,使得是以BC为斜边的直角三角形,若存在,求出b;若不存在,说明理由.第26题图(1)图(2)★★4、(2021滨州)如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线恰好经过轴上A、B两点.(1)求A、B、C三点的坐标;(2)求过A、B、C三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位?★★5、(2021长沙)已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中且、为实数.(1)求一次函数的表达式(用含b的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围.★★6、(2021长沙)如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.BAPxCQOy第26题图★★7、(2021常德)如图9,已知抛物线轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点.(1)求此抛物线的解析式;(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当的面积是面积的2倍时,求E点的坐标;(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.ABOC图9yx★★8、(2021常德)如图10,若四边形ABCD、四边形CFED都是正方形,显然图中有AG=CE,AG⊥CE.(1)当正方形G
立即下载