人教版走向高考数学A版(集合与函数)(函数的概念).ppt
上传人:sy****28 上传时间:2024-09-10 格式:PPT 页数:102 大小:4MB 金币:12 举报 版权申诉
预览加载中,请您耐心等待几秒...

人教版走向高考数学A版(集合与函数)(函数的概念).ppt

人教版走向高考数学A版(集合与函数)(函数的概念).ppt

预览

免费试读已结束,剩余 92 页请下载文档后查看

12 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

重点难点重点:①映射与函数的概念.②函数的定义域、值域及求法.③分段函数.难点:复合函数及分段函数.知识归纳1.映射(1)映射的概念:设A、B是两个集合,如果按照某种对应法则f,对于集合A中的一个元素,在集合B中都有的元素与它对应,这样的对应关系叫做从集合A到集合B的映射,记作f:A→B.(2)象和原象:给定一个集合A到B的映射,且a∈A,b∈B,如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.2.函数(1)传统定义:如果在某个变化过程中有两个变量x、y,对于x在某个范围内的每一个确定的值,按照某种对应法则f,y都有惟一确定的值和它对应,那么y就是x的函数,记为y=f(x).(2)近代定义:函数是由一个到另一个的映射.(3)函数的表示法有:理解函数概念还必须注意以下几点:①函数是一种特殊的映射,集合A、B都是非空的数的集合.②确定函数的映射是从定义域A到B(值域C⊆B)上的映射,允许A中的不同元素在B中有相同的象,但不允许B中的不同元素在A中有相同的原象,A中任意元素在B中都要有象,但B中元素可以在A中无原象,C中元素在A中不能没有原象.③若两个函数的定义域、对应法则分别相同,称这两个函数相等.④函数的定义域是自变量x的取值范围,是函数的一个重要组成部分.同一个对应法则,由于定义域不相同,函数的图象与性质一般也不相同.⑤函数的图象可以是一条或几条平滑的曲线.⑥对于以x为自变量的函数,f(a)的含义与f(x)的含义不同.f(a)表示自变量x=a时所得的函数值,它是一个常量;f(x)是x的函数,通常它是一个变量.(2)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足的x的取值范围;已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在x∈的条件下,求g(x)的值域.(3)实际问题或几何问题给出的函数的定义域:这类问题除要考虑函数解析式有意义外,还应考虑使实际问题或几何问题有意义.(4)如果函数是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数集合.4.函数的值域(1)函数值域的定义在函数y=f(x)中,与自变量x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域.(2)确定函数值域的原则①当函数y=f(x)用表格给出时,函数的值域是指表格中y的值的集合.②当函数y=f(x)的图象给出时,函数的值域是指图象在y轴上的投影对应的y的值的集合.③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则惟一确定.(4)求函数值域的方法求函数的值域是高中数学的难点,它没有固定的方法和模式.常用的方法有:①直接法——从自变量x的范围出发,通过观察和代数运算推出y=f(x)的取值范围;②配方法——配方法是求“二次型函数”值域的基本方法,形如F(x)=af2(x)+bf(x)+c的函数的值域问题,均可使用配方法.⑦单调性法——根据函数在定义域(或定义域的某个子集)上的单调性求出函数的值域.⑧求导法——当一个函数在定义域上可导时,可根据其导数求最值;⑨数形结合法——当一个函数图象可作时,通过图象可求其值域和最值;或利用函数所表示的几何意义,借助于几何方法求出函数的值域.误区警示1.映射的定义是有方向性的,即从集合A到B与集合B到A的映射是两个不同的映射.2.判断两个函数是否为相等函数,关键看定义域和对应法则是否都相同.3.复合函数求定义域时,因不能深刻理解函数定义域的意义而致误,常见的是把已知f(x)的定义域求f(g(x))的定义域与已知f[g(x)]的定义域求f(x)的定义域混淆.4.解题过程中不要忽视定义域的限制作用致误5.不要忽视实际问题的实际意义的限制作用.6.换元法求解析式或函数值域,换元后易漏掉考虑新元的取值范围.7.判别式法求值域对端点要进行检验.8.利用均值不等式求值域时,要注意必须满足已知条件和不等式一端是常数,等号能成立,还要注意符号.9.熟练掌握求函数值域的几种常用方法,要注意这些方法分别适用于哪些类型的函数.一、定义法用数学概念的基本定义解决相关问题的方法,称之为定义法.利用定义解题的关键是把握住定义的本质特征.[例1]已知函数f(x)的定义域为[-1,5],在同一直角坐标系下,函数y=f(x)的图象与直线x=a(a为实数常数)的交点个数为()A.0个B.1个C.2个D.0个或1个解析:∵f(x)的定义域为[-1,5],当a∈[-1,5]时,直线x=a与函数y=f(x)的图象必有一个交点,当a∉[-1,5]时,直线x=a与函数y=f(x)的图象无交点.根据函数的定义知,函数是一个特殊的映射,即对于