外接球的表面积和体积高考试题精选优质资料.doc
上传人:天马****23 上传时间:2024-09-10 格式:DOC 页数:40 大小:1.3MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

外接球的表面积和体积高考试题精选优质资料.doc

外接球的表面积和体积高考试题精选优质资料.doc

预览

免费试读已结束,剩余 30 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

外接球的表面积和体积高考试题精选优质资料(可以直接使用,可编辑优质资料,欢迎下载)外接球的表面积和体积高考试题精选(一)一.选择题(共30小题)1.一几何体的三视图如图所示,三个三角形都是直角边为2的等腰直角三角形,该几何体的顶点都在球O上,球O的表面积为()A.16πB.3πC.D.12π2.如图某几何体的三视图是直角边长为1的三个等腰直角三角形,则该几何体的外接球的表面积为()A.B.C.D.3π3.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12πB.πC.8πD.4π4.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.5.已知三棱锥O﹣ABC,A,B,C三点均在球心为O的球表面上,AB=BC=1,∠ABC=120°,三棱锥O﹣ABC的体积为,则球O的表面积是()A.544πB.16πC.πD.64π6.点A、B、C、D在同一个球的球面上,AB=BC=AC=,若四面体ABCD体积的最大值为,则这个球的表面积为()A.B.8πC.D.7.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.8πB.12πC.16πD.32π8.已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是()A.πB.2πC.πD.3π9.已知在三棱锥P﹣ABC中,VP﹣ABC=,∠APC=,∠BPC=,PA⊥AC,PB⊥BC,且平面PAC⊥平面PBC,那么三棱锥P﹣ABC外接球的体积为()A.B.C.D.10.已知三棱锥的三视图如图所示,则它的外接球的表面积为()A.4πB.8πC.12πD.16π11.一个四面体的顶点都在球面上,它们的正视图、侧视图、俯视图都是右图.图中圆内有一个以圆心为中心边长为1的正方形.则这个四面体的外接球的表面积是()A.πB.3πC.4πD.6π12.已知在三棱锥P﹣ABC中,PA=PB=BC=1,AB=,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一个球面上,则该球的表面积是()A.πB.3πC.D.2π13.球面上有三点A、B、C组成这个球的一个截面的内接三角形三个顶点,其中AB=18,BC=24,AC=30,球心到这个截面的距离为球半径的一半,则球的表面积为()A.1200πB.1400πC.1600πD.1800π14.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为()A.πB.πC.πD.π15.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为()A.4πB.12πC.16πD.32π16.已知三角形PAD所在平面与矩形ABCD所在平面互相垂直,PA=PD=AB=2,∠APD=90°,若点P、A、B、C、D都在同一球面上,则此球的表面积等于()A.4πB.πC.12πD.20π17.四面体ABCD的四个顶点都在球O的球面上,AB=2,BC=CD=1,∠BCD=60°,AB⊥平面BCD,则球O的表面积为()A.8πB.C.D.18.已知四棱锥P﹣ABCD的顶点都在球O上,底面ABCD是矩形,平面PAD⊥平面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为()A.B.C.32πD.64π19.正三棱柱的底面边长为,侧棱长为2,且三棱柱的顶点都在同一球面上,则该球的表面积为()A.4πB.8πC.12πD.16π20.已知正四面体的棱长,则其外接球的表面积为()A.8πB.12πC.πD.3π21.一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的半径为()A.B.C.D.322.已知SC是球O的直径,A,B是该球面上的两点,△ABC是边长为的正三角形,若三棱锥S﹣ABC的体积为,则球O的表面积为()A.16πB.18πC.20πD.24π23.已知三棱锥P﹣ABC,在底面△ABC中,∠A=60°,BC=,PA⊥面ABC,PA=2,则此三棱锥的外接球的表面积为()A.πB.4πC.πD.16π24.已知A,B,C在球O的球面上,AB=1,BC=2,∠ABC=60°,直线OA与截面ABC所成的角为30°,则球O的表面积为()A.4πB.16πC