如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第2课时平面向量的基本定理及坐标表示1.平面向量基本定理定理:如果e1,e2是同一平面内的两个向量,那么对于这一平面内的任意向量a,一对实数λ1,λ2,使a=.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组.2.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平面内的一个向量a,有且只有一对实数x,y,使a=xi+yj,把有序数对叫做向量a的坐标,记作a=,其中叫做a在x轴上的坐标,叫做a在y轴上的坐标.【思考探究】向量的坐标与点的坐标有何不同?(x1+x2,y1+y2)答案:D答案:B答案:A答案:①答案:2n-m1.以平面内任意两个不共线的向量为一组基底,该平面内的任意一个向量都可表示成这组基底的线性组合,基底不同,表示也不同.2.对于两个向量a,b,将它们用同一组基底表示,我们可通过分析这两个表示式的关系,来反映a与b的关系.3.利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或进行数乘运算.1.向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用.2.利用坐标运算求向量的基底表示,一般先求出基底向量和被表示向量的坐标,再用待定系数法求出系数.a∥b的充要条件有两种表达形式:(1)a∥b(b≠0)⇔a=λb(λ∈R);(2)设a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0.两种充要条件的表达形式不同,第(1)种是用线性关系的形式表示的,而且有前提条件b≠0.而第(2)种是用坐标形式表示的,且没有b≠0的限制.1.平面向量基本定理的应用平面向量基本定理是说同一平面内的任一向量都可以表示为两个不共线向量的线性组合,这就为向量的坐标表示奠定了基础,平面向量基本定理在向量运算及利用向量证明有关问题方面都有广泛的应用.2.如何正确认识向量坐标与点坐标的关系平面直角坐标系中,以原点为起点的向量=a,点A的位置被a所唯一确定,此时a的坐标与点A的坐标都是(x,y).从近两年的高考试题来看,向量的坐标运算及向量共线的坐标表示是高考的热点,题型既有选择题、填空题,又有解答题,属于中低档题目,常与向量的数量积运算等交汇命题,主要考查向量的坐标运算及向量共线条件的应用.同时又注重对函数与方程、转化化归等思想方法的考查.答案:-1答案:C答案:D