高中数学-第一章-导数及其应用-1.1.3-导数的几何意义课时作业-新人教版选修2-2.doc
上传人:王子****青蛙 上传时间:2024-09-10 格式:DOC 页数:11 大小:353KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

高中数学-第一章-导数及其应用-1.1.3-导数的几何意义课时作业-新人教版选修2-2.doc

高中数学-第一章-导数及其应用-1.1.3-导数的几何意义课时作业-新人教版选修2-2.doc

预览

免费试读已结束,剩余 1 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

PAGE-11-1.1.3导数的几何意义明目标、知重点1.了解导函数的概念;了解导数与割线斜率之间的关系.2.理解曲线的切线的概念;理解导数的几何意义.3.会求曲线上某点处的切线方程,初步体会以直代曲的意义.1.导数的几何意义(1)割线斜率与切线斜率设函数y=f(x)的图象如图所示,AB是过点A(x0,f(x0))与点B(x0+Δx,f(x0+Δx))的一条割线,此割线的斜率是eq\f(Δy,Δx)=eq\f(fx0+Δx-fx0,Δx).当点B沿曲线趋近于点A时,割线AB绕点A转动,它的极限位置为直线AD,这条直线AD叫做此曲线在点A处的切线.于是,当Δx→0时,割线AB的斜率无限趋近于过点A的切线AD的斜率k,即k=f′(x0)=eq\o(lim,\s\do4(Δx→0))eq\f(fx0+Δx-fx0,Δx).(2)导数的几何意义函数y=f(x)在点x=x0处的导数的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f′(x0).相应地,切线方程为y-f(x0)=f′(x0)(x-x0).2.函数的导数当x=x0时,f′(x0)是一个确定的数,则当x变化时,f′(x)是x的一个函数,称f′(x)是f(x)的导函数(简称导数).f′(x)也记作y′,即f′(x)=y′=eq\o(lim,\s\do4(Δx→0))eq\f(fx+Δx-fx,Δx).[情境导学]如果一个函数是路程关于时间的函数,那么函数在某点处的导数就是瞬时速度,这是函数的实际意义,那么从函数的图象上来考察函数在某点处的导数,它具有怎样的几何意义呢?这就是本节我们要研究的主要内容.探究点一导数的几何意义思考1如图,当点Pn(xn,f(xn))(n=1,2,3,4)沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PPn的变化趋势是什么?答当点Pn趋近于点P时,割线PPn趋近于确定的位置,这个确定位置的直线PT称为点P处的切线,该切线的斜率为eq\o(lim,\s\do4(Δx→0))eq\f(fx0+Δx-fx0,Δx),即曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k=f′(x0).思考2曲线的切线是不是一定和曲线只有一个交点?答不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.其图象特征是:切点附近的曲线均在切线的同侧,如l2.思考3曲线f(x)在点(x0,f(x0))处的切线与曲线过某点(x0,y0)的切线有何不同?答曲线f(x)在点(x0,f(x0))处的切线,点(x0,f(x0))一定是切点,只要求出k=f′(x0),利用点斜式写出切线即可;而曲线f(x)过某点(x0,y0)的切线,给出的点(x0,y0)不一定在曲线上,既使在曲线上也不一定是切点.小结曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k=f′(x0),欲求斜率,先找切点P(x0,f(x0)).思考4如何求曲线f(x)在点(x0,f(x0))处的切线方程?答先确定切点P(x0,f(x0)),再求出切线的斜率k=f′(x0),最后由点斜式可写出切线方程.例1已知曲线y=x2,(1)求曲线在点P(1,1)处的切线方程;(2)求曲线过点P(3,5)的切线方程.解(1)设切点为(x0,y0),∵y′|x=x0=eq\o(lim,\s\do4(Δx→0))eq\f(x0+Δx2-x\o\al(2,0),Δx)=eq\o(lim,\s\do4(Δx→0))eq\f(x\o\al(2,0)+2x0·Δx+Δx2-x\o\al(2,0),Δx)=2x0,∴y′|x=1=2.∴曲线在点P(1,1)处的切线方程为y-1=2(x-1),即y=2x-1.(2)点P(3,5)不在曲线y=x2上,设切点为(x0,y0),由(1)知,y′|x=x0=2x0,∴切线方程为y-y0=2x0(x-x0),由P(3,5)在所求直线上得5-y0=2x0(3-x0),①再由A(x0,y0)在曲线y=x2上得y0=xeq\o\al(2,0),②联立①,②得,x0=1或x0=5.从而切点A的坐标为(1,1)或(5,25).当切点为(1,1)时,切线的斜率为k1=2x0=2,此时切线方程为y-1=2(x-1),即y=2x-1,当切点为(5,25)时,切线的斜率为k2=2x0=10,此时切线方程为y-2