如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
4.1.2圆的一般方程一、三维目标:1.在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径.掌握方程x2+y2+Dx+Ey+F=0表示圆的条件.2.能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法求圆的方程。3.培养学生探索发现及分析解决问题的实际能力。二、过程与方法:1.通过对方程x2+y2+Dx+Ey+F=0表示圆的条件的探究,培养学生探索发现及分析解决问题的实际能力。2.渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。三、教学重点与难点:1.重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件确定方程中的系数,D、E、F.2.难点:对圆的一般方程的认识、掌握和运用四、教学过程:1.课题引入:问题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程。利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程。2.探索研究:上节课我们共同学习了圆的标准方程,那么请同学们回忆一下圆的标准方程:(提问后教师在黑板右侧写出)(x-a)2+(y-b)2=r2把圆的标准方程展开,并整理:x2+y2-2ax-2by+a2+b2-r2=0.令得……①这个方程是圆的方程.提出问题:反过来给出一个形如x2+y2+Dx+Ey+F=0的方程,它表示的曲线一定是圆吗?把x2+y2+Dx+Ey+F=0配方得……②(配方过程由学生去完成)这个方程是不是表示圆?讨论:(1)当时,方程②时,表示以(-,-)为圆心,为半径的圆;(2)当时,方程只有实数解,,即只表示一个点(-,-);(3)当时,方程没有实数解,因而它不表示任何图形综上所述,方程表示的曲线不一定是圆板书1:定义:只有当时,它表示的曲线才是圆,我们把形如的表示圆的方程称为圆的一般方程3.圆的一般方程形式上的特点:(启发学生归纳)(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项.(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。4.知识应用与解题研究:例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。分析:①、用配方法将其变形化成圆的标准形式。②、运用圆的一般方程的判断方法求解。但是,要注意对于来说,这里的.例2:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。分析:据已知条件,很难直接写出圆的标准方程,而圆的一般方程则需确定三个系数,而条件恰给出三点坐标,不妨试着先写出圆的一般方程解:设所求的圆的方程为:∵在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于的三元一次方程组,即解此方程组,可得:∴所求圆的方程为:;得圆心坐标为(4,-3).注方法二:或将左边配方化为圆的标准方程,,从而求出圆的半径,圆心坐标为(4,-3)板书2:待定系数法:学生讨论交流,归纳得出使用待定系数法的一般步骤:根据提议,选择标准方程或一般方程;根据条件列出关于a、b、r或D、E、F的方程组;解出a、b、r或D、E、F,代入标准方程或一般方程。例3、已知线段AB的端点B的坐标是(4,3),端点A在圆上运动,求线段AB的中点M的轨迹方程。分析:如图点A运动引起点M运动,而点A在已知圆上运动,点A的坐标满足方程。建立点M与点A坐标之间的关系,就可以建立点M的坐标满足的条件,求出点M的轨迹方程。解:设点M的坐标是(x,y),点A的坐标是(x0,y0)由于点B的坐标是(4,3),且点M是线段AB的中点,所以①上运动,所以点A的坐标满足方程,即②把①代入②,得5.课堂练习:第1、2、3题6小结:1.对方程的讨论(什么时候可以表示圆)2.与标准方程的互化3.用待定系数法求圆的方程4.求与圆有关的点的轨迹。7课后作业:习题4.1第2、3、6题设计感想这是一节介绍新知识的课,而且这节课还非常有利于展现知识的形成过程.因此,在设计这节课时,力求“过程、结论并重;知识、能力、思想方法并重”.在展现知识的形成过程中,尽量避免学生被动接受,引导学生探索,重视探索过程.一方面,把直线一般方程探求过程进行回顾、类比,学生从中领会探求方法;另一方面,“把标准方程展开→认识一般方程”这一过程充分运用了“通过特殊