复变函数期末考试复习题及答案详解.doc
上传人:天马****23 上传时间:2024-09-15 格式:DOC 页数:35 大小:4.6MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

复变函数期末考试复习题及答案详解.doc

复变函数期末考试复习题及答案详解.doc

预览

免费试读已结束,剩余 25 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

最新范本,供参考!最新范本,供参考!最新范本,供参考!《复变函数》考试试题(一)__________.(为自然数)2._________.3.函数的周期为___________.4.设,则的孤立奇点有__________.5.幂级数的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若,则______________.8.________,其中n为自然数.9.的孤立奇点为________.10.若是的极点,则.三.计算题(40分):1.设,求在内的罗朗展式.2.3.设,其中,试求4.求复数的实部与虚部.四.证明题.(20分)1.函数在区域内解析.证明:如果在内为常数,那么它在内为常数.2.试证:在割去线段的平面内能分出两个单值解析分支,并求出支割线上岸取正值的那支在的值.《复变函数》考试试题(二)二.填空题.(20分)1.设,则2.设,则________.3._________.(为自然数)4.幂级数的收敛半径为__________.5.若z0是f(z)的m阶零点且m>0,则z0是的_____零点.6.函数ez的周期为__________.7.方程在单位圆内的零点个数为________.8.设,则的孤立奇点有_________.9.函数的不解析点之集为________.10..三.计算题.(40分)1.求函数的幂级数展开式.2.在复平面上取上半虚轴作割线.试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点处的值.3.计算积分:,积分路径为(1)单位圆()的右半圆.4.求.四.证明题.(20分)1.设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是在D内解析.2.试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)二.填空题.(20分)1.设,则f(z)的定义域为___________.2.函数ez的周期为_________.3.若,则__________.4.___________.5._________.(为自然数)6.幂级数的收敛半径为__________.7.设,则f(z)的孤立奇点有__________.8.设,则.9.若是的极点,则.10..三.计算题.(40分)1.将函数在圆环域内展为Laurent级数.2.试求幂级数的收敛半径.3.算下列积分:,其中是.4.求在|z|<1内根的个数.四.证明题.(20分)1.函数在区域内解析.证明:如果在内为常数,那么它在内为常数.2.设是一整函数,并且假定存在着一个正整数n,以及两个正数R及M,使得当时,证明是一个至多n次的多项式或一常数。《复变函数》考试试题(四)二.填空题.(20分)1.设,则.2.若,则______________.3.函数ez的周期为__________.4.函数的幂级数展开式为__________5.若函数f(z)在复平面上处处解析,则称它是___________.6.若函数f(z)在区域D内除去有限个极点之外处处解析,则称它是D内的_____________.7.设,则.8.的孤立奇点为________.9.若是的极点,则.10._____________.三.计算题.(40分)1.解方程.2.设,求3..4.函数有哪些奇点?各属何类型(若是极点,指明它的阶数).四.证明题.(20分)证明:若函数在上半平面解析,则函数在下半平面解析.2.证明方程在内仅有3个根.《复变函数》考试试题(五)二.填空题.(20分)1.设,则.2.当时,为实数.3.设,则.4.的周期为___.5.设,则.6..7.若函数f(z)在区域D内除去有限个极点之外处处解析,则称它是D内的_____________。8.函数的幂级数展开式为_________.9.的孤立奇点为________.10.设C是以为a心,r为半径的圆周,则.(为自然数)三.计算题.(40分)1.求复数的实部与虚部.2.计算积分:,在这里L表示连接原点到的直线段.求积分:,其中0<a<1.应用儒歇定理求方程,在|z|<1内根的个数,在这里在上解析,并且.四.证明题.(20分)1.证明函数除去在外,处处不可微.2.设是一整函数,并且假定存在着一个正整数n,以及两个数R及M,使得当时,证明:是一个至多n次的多项式或一常数.《复变函数》考试试题(六)填空题(20分)若,则___________.设,则的定义域为_________________________