自动控制原理_胡寿松_第五版_第二章ppt.ppt
上传人:qw****27 上传时间:2024-09-12 格式:PPT 页数:134 大小:10.4MB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

自动控制原理_胡寿松_第五版_第二章ppt.ppt

自动控制原理_胡寿松_第五版_第二章ppt.ppt

预览

免费试读已结束,剩余 124 页请下载文档后查看

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第二章控制系统的数学模型2.1.1什么是数学模型?所谓的数学模型,是描述系统动态特性及各变量之间关系的数学表达式。控制系统定量分析的基础。2.1.2数学模型的特点1)相似性:不同性质的系统,具有相同的数学模型。抽象的变量和系统2)简化性和准确性:忽略次要因素,简化之,但不能太简单,结果合理3)动态模型:变量各阶导数之间关系的微分方程。性能分析4)静态模型:静态条件下,各变量之间的代数方程。放大倍数2.1.3数学模型的类型1)微分方程:时域其它模型的基础直观求解繁琐2)传递函数:复频域微分方程拉氏变换后的结果3)频率特性:频域分析方法不同,各有所长2.1.4数学模型的建立方法1)分析法:根据系统各部分的运动机理,按有关定理列方程,合在一起。2)实验法:黑箱问题。施加某种测试信号,记录输出,用系统辨识的方法,得到数学模型。建模原则:选择合适的分析方法-确定相应的数学模型-简化3)根据相关基本定律,列出各部分的原始方程式。4)列写中间变量的辅助方程。方程数与变量数相等!5)联立上述方程,消去中间变量,得到只包含输入输出的方程式。6)将方程式化成标准形。与输出有关的放在左边,与输入有关的放在右边,导数项按降阶排列,系数化为有物理意义的形式。三个基本的无源元件:质量m,弹簧k,阻尼器f对应三种阻碍运动的力:惯性力ma;弹性力ky;阻尼力fv例2-1(P22例2-3)弹簧-质量-阻尼器串联系统。试列出以外力F(t)为输入量,以质量的位移y(t)为输出量的运动方程式。(3)按牛顿第二定律列写原始方程,即2.2.3电路系统举例例2-2(P21例2-1)电阻-电感-电容串联系统。R-L-C串联电路,试列出以ur(t)为输入量,uc(t)为输出量的网络微分方程式。解:(1)确定输入量为ur(t),输出量为uc(t),中间变量为i(t)。(6)整理成标准形,令T1=L/R,T2=RC,则方程化为式中,c(t)是系统的输出变量,r(t)是系统的输入变量。从工程可实现的角度来看,上述微分方程满足以下约束:(1)方程的系数为实常数,由系统自身参数决定;(2)左端的阶次比右端的高,n>=m。这是因为实际物理系统均有惯性或储能元件;(3)方程式两端的各项的量纲应一致。利用这点,可以检查微分方程式的正确与否。相似系统的定义:任何系统,只要它们的微分方程具有相同的形式。在方程中,占据相同位置的量,相似量。上面两个例题介绍的系统,就是相似系统。直流电动机是将电能转化为机械能的一种典型的机电转换装置。在电枢控制的直流电动机中,由输入的电枢电压ua在电枢回路产生电枢电流ia,再由电枢电流ia与激磁磁通相互作用产生电磁转矩MD,从而使电枢旋转,拖动负载运动。Ra和La分别是电枢绕组总电阻和总电感。在完成能量转换的过程中,其绕组在磁场中切割磁力线会产生感应反电势Ea,其大小与激磁磁通及转速成正比,方向与外加电枢电压ua相反。下面推导其微分方程式。(1)取电枢电压ua为控制输入,负载转矩ML为扰动输入,电动机角速度为输出量;(2)忽略电枢反应、磁滞、涡流效应等影响,当激磁电流不变if时,激磁磁通视为不变,则将变量关系看作线性关系;(3)列写原始方程式电枢回路方程:电动机轴上机械运动方程:令机电时间常数Tm:2)对微型电机,转动惯量J很小,且Ra、La都可忽略小结通常情况下,元件或系统微分方程的阶次等于元件或系统中所包含的独立储能元件(惯性质量、弹性要素、电感、电容等)的个数;因为系统每增加一个独立储能元,其内部就多一层能量(信息)的交换。线性系统与非线性系统非线性系统非线性系统线性系统微分方程的一般形式线性化问题的提出线性化的提出(x−x0)+y=f(x0)+增量方程的数学含义就是将参考坐标的原点移到系统或元件的平衡工作点上,对于实际系统就是以正常工作状态为研究系统运动的起始点,这时,系统所有的初始条件均为零。(x2−x20)+L滑动线性化——切线法非线性系统的线性化微分方程的建立实例:单摆运动线性化一.复习拉氏变换及其性质1.定义记X(s)=L[x(t)]2.进行拉氏变换的条件1)t0,x(t)=0;当t0,x(t)是分段连续;2)当t充分大后满足不等式x(t)Mect,M,c是常数。3.性质和定理1)线性性质L[ax1(t)+bx2(t)]=aX1(s)+bX2(s)2)微分定理若x1(0)=x2(0)=…=0,x(t)各重积分在t=0的值为0时,5)初值定理如果x(t)及其一阶导数是可拉氏变换的,并且6)延迟定理L[x(t)1(t)]=e