第04讲感知器Perceptron.ppt
上传人:天马****23 上传时间:2024-09-11 格式:PPT 页数:19 大小:143KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

第04讲感知器Perceptron.ppt

第04讲感知器Perceptron.ppt

预览

免费试读已结束,剩余 9 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

感知器是由美国计算机科学家罗森布拉特(F.Roseblatt)于1957年提出的。单层感知器神经元模型图:F.Roseblatt已经证明,如果两类模式是线性可分的(指存在一个超平面将它们分开),则算法一定收敛。感知器特别适用于简单的模式分类问题,也可用于基于模式分类的学习控制中。本节中所说的感知器是指单层的感知器。多层网络因为要用到后面将要介绍的反向传播法进行权值修正,所以把它们均归类为反向传播网络之中。4.1感知器的网络结构感知器的输出值是通过测试加权输入和值落在阈值函数的左右来进行分类的,即有:4.2感知器的图形解释以输入矢量r=2为例,对于选定的权值w1、w2和b,可以在以p1和p2分别作为横、纵坐标的输入平面内画出W*P+b=w1p1十w2p2十b=0的轨迹,它是一条直线,此直线上的及其线以上部分的所有p1、p2值均使w1p1十w2p2十b>0,这些点若通过由w1、w2和b构成的感知器则使其输出为1;该直线以下部分的点则使感知器的输出为0。所以当采用感知器对不同的输入矢量进行期望输出为0或1的分类时,其问题可转化为:对于已知输入矢量在输入空间形成的不同点的位置,设计感知器的权值W和b,将由W*P+b=0的直线放置在适当的位置上使输入矢量按期望输出值进行上下分类。4.3感知器的学习规则如果第i个神经元的输出是正确的,即有:ai=ti,那么与第i个神经元联接的权值wij和偏差值bi保持不变;如果第i个神经元的输出是0,但期望输出为1,即有ai=0,而ti=1,此时权值修正算法为:新的权值wij为旧的权值wij加上输人矢量pj;类似的,新的偏差bi为旧偏差bi加上它的输入1;如果第i个神经元的输出为1,但期望输出为0,即有ai=1,而ti=0,此时权值修正算法为:新的权值wij等于旧的权值wij减去输入矢量pj;类似的,新的偏差bi为旧偏差bi减去1。感知器学习规则的实质为:权值的变化量等于正负输入矢量。对于所有的i和j,i=l,2,…,s;j=1,2,…,r,感知器修正权值公式为:4.4网络的训练感知器设计训练的步骤可总结如下:1)对于所要解决的问题,确定输入矢量P,目标矢量T,并由此确定各矢量的维数以及确定网络结构大小的神经元数目:r,s和q;2)参数初始化:a)赋给权矢量w在(—l,1)的随机非零初始值;b)给出最大训练循环次数max_epoch;3)网络表达式:根据输人矢量P以及最新权矢量W,计算网络输出矢量A;4)检查:检查输出矢量A与目标矢量T是否相同,如果是,或已达最大循环次数,训练结束,否则转入5);5)学习:根据(4.5)式感知器的学习规则调整权矢量,并返回3)。4.5感知器神经网络应用的局限性4.6感知器神经网络设计实例当采用感知器神经网络来对此题进行求解时,网络结构图如图4.5所示。练习演示percepl.m和percep2.m4.7作业4.8感知器的局限性