排列组合问题解法总结.doc
上传人:天马****23 上传时间:2024-09-15 格式:DOC 页数:4 大小:266KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

排列组合问题解法总结.doc

排列组合问题解法总结.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

.实用文档.排列组合问题的常见解法一.元素相同问题隔板策略例1.有10个运发动名额,分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差异,把它们排成一排.相邻名额之间形成9个空隙.在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有种分法.注:这和投信问题是不同的,投信问题的关键是信不同,邮筒也不同,而这里的问题是邮筒不同,但信是相同的.即班级不同,但名额都是一样的.练习题:1.10个相同的球装5个盒中,每盒至少一个有多少装法?2.求这个方程组的自然数解的组数二.环排问题直排策略如果在圆周上个不同的位置编上不同的号码,那么从个不同的元素的中选取个不同的元素排在圆周上不同的位置,这种排列和直线排列是相同的;如果从个不同的元素的中选取个不同的元素排列在圆周上,位置没有编号,元素间的相对位置没有改变,不计顺逆方向,这种排列和直线排列是不同的,这就是环形排列的问题.一个个元素的环形排列,相当于一个有个顶点的多边形,沿相邻两个点的弧线剪断,再拉直就是形成一个直线排列,即一个个元素的环形排列对应着个直线排列,设从个元素中取出个元素组成的环形排列数为个,那么对应的直线排列数为个,又因为从个元素中取出个元素的排成一排的排列数为个,所以,所以.即从个元素中取出个元素组成的环形排列数为.个元素的环形排列数为例2.8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人并从此位置把圆形展成直线其余7人共有种排法,即种练习题:6颗颜色不同的钻石,可穿成几种钻石圈120三.多排问题直排策略例3.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.先排前4个位置,2个特殊元素有种排法,再排后4个位置上的特殊元素丙有种,其余的5人在5个位置上任意排列有种,那么共有种排法.〔排好后,按前4个为前排,后4人为后排分成两排即可〕练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是346解:由于甲乙二人不能相邻,所以前排第1,4,8,11四个位置和后排第1,12位置是排甲乙中的一个时,与它相邻的位置只能排除一个,而其它位置要排除3个,所以共有排列四.排列组合混合问题先选后排策略例4.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有种方法,根据分步计数原理装球的方法共有练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,那么不同的选法有192种五.小集团问题先整体后局部策略例5.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数在1,5在两个奇数之间,这样的五位数有多少个?〔注:两个偶数2,4在两个奇数1,5之间,这是题意,说这个结构不能被打破,故3只能排这个结构的外围,也就是说要把这个结构看成一个整体与3进行排列〕.解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法.练习题:1.方案展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2.5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有种六.正难那么反总体淘汰策略例6.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法.这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有,只含有1个偶数的取法有,和为偶数的取法共有.再淘汰和小于10的偶数共9种,符合条件的取法共有练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?七.平均分组问题除法策略例7.6本不同的书平均分成3堆,每堆2本共有多少分法?解:分三步取书得种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF,假设第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),那么中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有种取法,而这些分法仅是(AB,CD,EF)一种分法,故共有种分法.平均分成的