因式分解教案编辑精选.docx
上传人:一条****淑淑 上传时间:2024-09-13 格式:DOCX 页数:14 大小:18KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

因式分解教案编辑精选.docx

因式分解教案_3.docx

预览

免费试读已结束,剩余 4 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

因式分解教案有关因式分解教案4篇作为一名为他人授业解惑的教育工作者,常常要写一份优秀的教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那要怎么写好教案呢?下面是小编精心整理的因式分解教案4篇,仅供参考,大家一起来看看吧。因式分解教案篇1教学目标1、会运用因式分解进行简单的多项式除法。2、会运用因式分解解简单的方程。二、教学重点与难点教学重点:教学重点因式分解在多项式除法和解方程两方面的应用。教学难点:应用因式分解解方程涉及较多的推理过程。三、教学过程(一)引入新课1、知识回顾(1)因式分解的几种方法:①提取公因式法:ma+mb=m(a+b)②应用平方差公式:=(a+b)(a—b)③应用完全平方公式:a2ab+b=(ab)(2)课前热身:①分解因式:(x+4)y—16xy(二)师生互动,讲授新课1、运用因式分解进行多项式除法例1计算:(1)(2ab—8ab)(4a—b)(2)(4x—9)(3—2x)解:(1)(2ab—8ab)(4a—b)=—2ab(4a—b)(4a—b)=—2ab(2)(4x—9)(3—2x)=(2x+3)(2x—3)[—(2x—3)]=—(2x+3)=—2x—3一个小问题:这里的`x能等于3/2吗?为什么?想一想:那么(4x—9)(3—2x)呢?练习:课本P162课内练习合作学习想一想:如果已知()()=0,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢?(让学生自己思考、相互之间讨论!)事实上,若AB=0,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0吗?3、运用因式分解解简单的方程例2解下列方程:(1)2x+x=0(2)(2x—1)=(x+2)解:x(x+1)=0解:(2x—1)—(x+2)=0则x=0,或2x+1=0(3x+1)(x—3)=0原方程的根是x1=0,x2=则3x+1=0,或x—3=0原方程的根是x1=,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1,x2等练习:课本P162课内练习2做一做!对于方程:x+2=(x+2),你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x+4)—16x=0解:将原方程左边分解因式,得(x+4)—(4x)=0(x+4+4x)(x+4—4x)=0(x+4x+4)(x—4x+4)=0(x+2)(x—2)=0接着继续解方程,5、练一练①已知a、b、c为三角形的三边,试判断a—2ab+b—c大于零?小于零?等于零?解:a—2ab+b—c=(a—b)—c=(a—b+c)(a—b—c)∵a、b、c为三角形的三边a+c﹥ba﹤b+ca—b+c﹥0a—b—c﹤0即:(a—b+c)(a—b—c)﹤0,因此a—2ab+b—c小于零。6、挑战极限①已知:x=20xx,求∣4x—4x+3∣—4∣x+2x+2∣+13x+6的值。解:∵4x—4x+3=(4x—4x+1)+2=(2x—1)+20x+2x+2=(x+2x+1)+1=(x+1)+10∣4x—4x+3∣—4∣x+2x+2∣+13x+6=4x—4x+3—4(x+2x+2)+13x+6=4x—4x+3—4x—8x—8+13x+6=x+1即:原式=x+1=20xx+1=20xx(三)梳理知识,总结收获因式分解的两种应用:(1)运用因式分解进行多项式除法(2)运用因式分解解简单的方程(四)布置课后作业作业本6、42、课本P163作业题(选做)因式分解教案篇2课型复习课教法讲练结合教学目标(知识、能力、教育)1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).2.通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力教学重点掌握用提取公因式法、公式法分解因式教学难点根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1.分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式.2.分解困式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法: