如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
基础知识复习解斜三角形应用举例例1.设A、B两点在河的两岸,要测量两点之间的距离。解:根据正弦定理,得例2.A、B两点都在河的对岸(不可到达),设计一种测量两点间的距离的方法。解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA=δ.在ADC和BDC中,应用正弦定理得练习1.一艘船以32.2nmile/hr的速度向正北航行。在A处看灯塔S在船的北偏东20o的方向,30min后航行到B处,在B处看灯塔在船的北偏东65o的方向,已知距离此灯塔6.5nmile以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?图中给出了怎样的一个几何图形?已知什么,求什么?例3AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法几个概念:解:选择一条水平基线HG,使H,G,B三点在同一条直线上。由在H,G两点用测角仪器测得A的仰角分别是α,β,CD=a,测角仪器的高是h.那么,在ACD中,根据正弦定理可得分析:根据已知条件,应该设法计算出AB或AC的长CD=BD-BC≈177-27.3=150(m)例5一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15°的方向上,行驶5km后到达B处,测得此山顶在东偏南25°的方向上,仰角8°,求此山的高度CD.例5一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15°的方向上,行驶5km后到达B处,测得此山顶在东偏南25°的方向上,仰角8°,求此山的高度CD.例6一艘海轮从A出发,沿北偏东75°的方向航行67.5nmile后到达海岛B,然后从B出发,沿北偏东32°的方向航行54.0nmile后到达海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离(角度精确到0.1°,距离精确到0.01nmile)?练习已知△ABC中,BC=85mm,AB=340mm,∠C=80°,求AC.答:活塞移动的距离为81mm.解:如图,在△ABC中由余弦定理得:又在△ABC中由正弦定理得:3.3.5m长的木棒斜靠在石堤旁,棒的一端离堤足1.2m的地面上,另一端沿堤上2.8m的地方,求地对地面的倾斜角。总结