如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
数学导学案九年级(下)第13周第2课时第2课时二次函数y=ax2的图象与性质一、学习目标:1.知道二次函数的图象是一条抛物线;2.会画二次函数y=ax2的图象;3.掌握二次函数y=ax2的性质,并会灵活应用.二、阅读课本:P6—81.画二次函数y=x2的图象.列表:x…-3-2-10123…y=x2……描点,并连线由图象可得二次函数y=x2的性质:(1)二次函数y=x2是一条曲线,把这条曲线叫做______________.(2)二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.(3)自变量x的取值范围是____________.(4)观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.(5)抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.(6)抛物线y=x2有____________点(填“最高”或“最低”).2.在同一直角坐标系中,画出函数y=EQ\F(1,2)x2,y=x2,y=2x2的图象.解:列表并填:x…-4-3-2-101234…y=EQ\F(1,2)x2……y=x2的图象刚画过,再把它画出来.x…-2-1.5-1-0.500.511.52…y=2x2……归纳:抛物线y=EQ\F(1,2)x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”).3.抛物线y=ax2的性质图象(草图)开口方向顶点对称轴有最高或最低点最值a>0当x=____时,y有最_______值,是______.a<0当x=____时,y有最_______值,是______.2.抛物线y=x2与y=-x2关于______对称,因此,抛物线y=ax2与y=-ax2关于_______对称,开口大小_______________.3.当a>0时,a越大,抛物线的开口越___________;当a<0时,|a|越大,抛物线的开口越_________;因此,|a|越大,抛物线的开口越____,反之,|a|越小,抛物线的开口越_____.三、小组讨论并展示预习成果四、教师点拨释疑五、课堂训练1.填表:开口方向顶点对称轴有最高或最低点最值y=EQ\F(2,3)x2当x=____时,y有最_______值,是______.y=-8x22.若二次函数y=ax2的图象过点(1,-2),则a的值是___________.3.二次函数y=(m-1)x2的图象开口向下,则m____________.4.如图,①y=ax2②y=bx2③y=cx2④y=dx2比较a、b、c、d的大小,用“>”连接.____________六、小结:你在这一节课中的收获是七、作业:1.函数y=EQ\F(3,7)x2的图象开口向_______,顶点是__________,对称轴是________,当x=___________时,有最_________值是_________.2.二次函数y=mx有最低点,则m=___________.3.二次函数y=(k+1)x2的图象如图所示,则k的取值范围为___________.4.写出一个过点(1,2)的函数表达式_________________.