《双曲线的简单几何性质》说课稿(张勇).doc
上传人:sy****28 上传时间:2024-09-14 格式:DOC 页数:3 大小:95KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

《双曲线的简单几何性质》说课稿(张勇).doc

《双曲线的简单几何性质》说课稿(张勇).doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

《双曲线的简单几何性质》说课稿西北师大附中数学组张勇各位老师,大家好!今天我说课的课题是《双曲线的简单几何性质》,我将从以下几个方面进行阐述:教材分析本节内容是人教社出版的全日制普通高级中学教科书(必修)《数学》第二册(上)第八章第四节第一课时,属于解析几何领域的知识。由曲线方程研究曲线的几何性质,是高中阶段解析几何所研究的主要问题之一。二次曲线:圆、椭圆、双曲线和抛物线是解析几何的主要研究对象,这四种曲线可以通过用不同的方式截圆锥得到,统称为圆锥曲线。在学习时,要注意挖掘它们之间的内在联系和区别,注意圆锥曲线之间的共同点与特殊性。本节课在学习了椭圆的简单几何性质基础上,通过类比椭圆的简单几何性质,探究、归纳出双曲线类似于椭圆的几何性质(范围、对称性、顶点、离心率);并且进一步探究出双曲线独有的几何性质(实轴、虚轴、渐近线);也为后续研究抛物线的几何性质打下了基础。因此这节课在教材中起承上启下的作用,是培养学生利用曲线方程讨论曲线性质(即由数到形)的思想方法以及概括、归纳能力和逻辑思维能力的重要内容,对培养学生的探索精神和创新能力都有重要的意义。学情分析与学生水平分析1.学情分析:在此之前,学生已经学习了椭圆的标准方程和它的几何性质,并且类比、推导、归纳出了双曲线的标准方程,这节课将进一步研究、归纳出类似于椭圆几何性质的双曲线的几何性质(范围、对称性、顶点、离心率)和双曲线独有的几何性质(实轴、虚轴、渐近线)。通过对双曲线性质的探究学习,可使学生在已有的知识结构的基础上,拓展延伸,构建新的知识体系;同时对由方程讨论曲线性质(即由数到形)的思想方法有更深刻的认识。2.学生水平分析:我校学生是从全省各地招来的最优秀的学生,数学基础扎实,自主学习能力较高。在本节课的学习中,可以发挥学生的主观能动性,教师加以引导,完成本节课的教学。教学目标根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标:1.知识目标:使学生理解并初步掌握双曲线的简单几何性质(范围、对称性、顶点、离心率、渐近线)。2.能力目标:利用曲线方程研究曲线性质的基本方法构建新知识体系;通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力。3.德育目标:培养学生运用数形结合的数学思想和方法解决问题的能力。使学生在成功的体验中获得成就感,进而激发学生学习数学的兴趣。教学重点和难点基于对教材的认识和对教学目标的确定,本节课的重点和难点如下:1.重点:本课主要内容是双曲线的几何性质,因此本课重点是引导学生探求双曲线的几何性质,并运用类比及数形结合的思想来解决数学问题。2.难点:双曲线的实轴和虚轴是区别于椭圆的长轴和短轴的概念,而渐进线的概念是双曲线所特有的,且渐进线定义是解析几何中第一次用极限的思想来进行证明的,因此这些都是本节课的难点。教学方法为突出重点、突破难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈设计思路:1.教法:本节课主要采用引导发现法,通过师(生)不断地设(释)疑,揭示思维过程,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索、归纳的过程。2.学法:鼓励学生运用发现、探究、协作、讨论的学习方法,联系所学知识,大胆、主动地分析问题和解决问题,进一步提高自己的学习能力。六、教学过程在分析教材、确定教学目标、确定重点和难点、合理选择教法和学法的基础上,我预设的教学过程如下:教学活动流程图活动流程活动内容目的活动一:复习回顾(提问学生)椭圆的4个简单的几何性质:范围、对称性、顶点、离心率。以旧引新,揭示课题。活动二:探索研究(提出问题)类比椭圆的简单几何性质,双曲线是否具有类似的几何性质:范围、对称性、顶点、离心率?(然后学生分组讨论,给大约6分钟时间)已有知识结构的拓展延伸,借助于类比方法,激发学生学习数学的兴趣。活动三:讨论归纳(请其中一组学生派代表说讨论结果,其他组同学作补充,教师加以引导)双曲线的4个简单的几何性质:范围、对称性、顶点、离心率。(教师强调指出)实轴和虚轴是双曲线区别于椭圆的长轴和短轴的概念;离心率的范围(>1)。逐步构建新知识体系,突破实轴和虚轴这两个难点。活动四:拓展探究1.(提出问题)椭圆的离心率是反映椭圆扁圆程度的量,双曲线的离心率与双曲线有何关系?2.(启发引导)由可发现:越大,越大;越小,越小。(引导学生考查的几何意义)表示直线的斜率的绝对值。3.(探究直线与双曲线的关系)回顾轴,轴是曲线的渐近线,直线是正切函数图像的渐近线,猜想:直线是双曲线的渐近线。(证明猜想)证明:双曲线的各支向外延伸时,与直线逐渐接近。(证明中强调极限思想的运用)4.(回答1中提出的问题,说明离心率的几何意义)离心率是反映双曲线开