北师大版初三数学二次函数练习题.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:14 大小:1.4MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

北师大版初三数学二次函数练习题.pdf

北师大版初三数学二次函数练习题.pdf

预览

免费试读已结束,剩余 4 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

二次函数的图像与性质同步检测一、选择题1.抛物线y(x1)22的顶点坐标是()A.(-1,2)B.(-1,-2)C.(1,2)D.(1,-2)k2.函数y与ykx2k(k≠0)在同一直角坐标系中的图象可能是()xA.B.C.D.3.在下列二次函数中,其图象对称轴为x=-2的是()A.y(x2)2B.y2x22y(2x2)2C.y2x22D.4.如图是二次函数yax2bxc的图象,下列结论:①二次三项式ax2bxc的最大值为4;②4a+2b+c<0;③一元二次方程ax2bxc1的两根之和为-1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个5.在同一直角坐标系中,函数ykx2k和y=kx+k(k≠0)的图象大致是()A.B.C.D.6.如图图形中,阴影部分面积相等的是()A.甲乙B.甲丙C.乙丙D.丙丁7.王芳将如图所示的三条水平直线m,m,m的其中一条记为x轴(向右为正方向),123三条竖直直线m,m,m的其中一条记为y轴(向上为正方向),并在此坐标平面内画456出了抛物线yax26ax3,则她所选择的x轴和y轴分别为()A.m,m14B.m,m23C.m,m36D.m,m458.已知抛物线y=ax2+bx+c开口向下,顶点坐标(3,-5),那么该抛物线有()A.最小值-5B.最大值-5C.最小值3D.最大值39.抛物线yx22x2经过平移得到yx2,平移方法是()A.向右平移1个单位,再向上平移1个单位B.向右平移1个单位,再向下平移1个单位C.向左平移1个单位,再向上平移1个单位D.向左平移1个单位,再向下平移1个单位10.若(2,5)、(4,5)是抛物线yax2bxc上的两个点,则它的对称轴是()bA.xB.x=1C.x=2D.x=3a11.若点A(2,y),B(-3,y),C(-1,y)三点在抛物线yx24xm的图象123上,则y、y、y的大小关系是()123A.y>y>yB.y>y>yC.y>y>yD.y>y>y123213231312x212.若函数y的自变量x的取值范围是全体实数,则c的取值范围是()x22xcA.c>1B.c=1C.c<1D.c≤113.二次函数yx2xm(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a-1时,函数值()A.y<0B.0<y<mC.y>mD.y=m14.直角坐标平面上将二次函数y(2x1)22的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,-2)C.(0,-1)D.(-2,1)15.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y(2x20)21558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是()A.20B.1508C.1558D.1585二、填空题216.已知二次函数y(m2)x的图象开口向下,则m的取值范围是17.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度5为h(m)与飞行时间t(s)的关系式是ht220t1,若这种焰火在点燃升空后到最2高处引爆,则从点火到引爆所需时间为s.18.已知二次函数yax2bxc的图象如图所示,则点P(a,bc)在第象限.19.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ac>0;②2a+b=0;③a+b+c=0;④当x>1时,函数y随x的增大而增大;⑤当y>0时,-1<x<3.其中,正确的说法有(请写出所有正确说法的序号).20.已知抛物线yax2bxc(a<0)过A(-2,0)、O(0,0)、B(-3,y)、C(3,1y)四点,则y与y的大小关系是212三、解答题121.已知抛物线yx2x4,2(1)用配方法确定它的顶点坐标、对称轴;(2)x取何值时,y随x增大而减小?(3)x取何值时,抛物线在x轴上方?22.用配方法把函数y3x26x10化成y(axh)2k的形式,然后指出它的图象开口方向,对称轴,顶点坐标和最值.23.已知m,n是关于x的方程x22axa60的两实根,求y(m1)2(n1)2的最小值.124.把抛