如何在数学课堂中实施变式教学.doc
上传人:qw****27 上传时间:2024-09-10 格式:DOC 页数:4 大小:30KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

如何在数学课堂中实施变式教学.doc

如何在数学课堂中实施变式教学.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

如何在数学课堂中实施变式教学变式教学是指教师在引导学生解答数学问题时,变更概念非本质的特征,变更问题的条件或结论;转换问题的形式或内容;创设实际应用的各种环境,使概念或本质不变的一种教学方式。变式教学对提高学生思维能力、应变能力是大有益处的。下面本人从几种类型课中的变式教学和对在变式教学中的几个注意点谈谈自己的看法。一、多种类型课的变式教学1、概念课中的变式教学教学实践中发现,有些学生虽然能背熟定义、公式,但对概念的理解却十分肤浅,这些学生利用所学知识解题时,常常发生错误。为了能使学生牢固地掌握概念的本质属性,确定概念的内涵和外延,在讲清每个概念的来龙去脉后,教师还应该适当地采用变式训练。例如在上了“绝对值”的概念后,为了让学生进一步理解绝对值的概念,首先应让学生理解绝对值的几何意义:一个数a的绝对值就是在数轴上表示数a的点与原点的距离;其次,应让学生理解绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。第三,绝对值的数学符号表达式|a|=a(a>0);|a|=-a(a<0)。下列变式例题可以考察绝对值的概念。例题:判断下列语句是否正确?①没有绝对值是一3的数;②绝对值是它本身的数是0;③任何有理数的绝对值都是正数;④0是绝对值最小的数;⑤如果两个有理数不相等,那么这两个数的绝对值也不相等;⑥任何有理数的绝对值都大于它本身;又如在上了“同类项”的概念后,教师可设计如下的练习进一步巩固同类项的概念。若下列每对都是同类项,试问括号内应填上什么样的数或字母:①—5x2y3和x()y3②—5x2y3和x()y()③—5x2和x()y3④—5()2()()和x2y3数学中有许多概念、法则、公式、定理和方法,因内容相近致使学生在学习中发生混淆。演变、辨析、对比,就是对某一问题给出有正有误的答案,让学生辨别哪个正确,哪个错误。并说出根据,这样的“变式教学”能促进学生把握问题的实质,使学生客观地评价事物,提高辨别是非的能力,培养思维的批判性。2.例题课中的变式教学目前,数学教师在例题讲解方面采用的是“教师讲例题,学生仿例题”的公式化的教学,这种单纯性地讲授和简单地套用阻止了学生思维的发展.而教材中的例题富有典型性和深刻性,那么如何引导学生充分利用例题揭示其深刻性,领悟其奥妙性,这就要求我们教师对课本例题进行“深加工”。在“一元二次方程的应用”中的例题:[例题]某商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,该种衬衫每涨价1元,售量减少10件。如果商场计划每月赚得利润8000元,请问售价应定为多少元?每月应进货多少?若老板想仓库租金尽量少?售价应定为多少元?[变式1]该种衬衫每涨价2元,售量减少20件。又怎么样呢?[变式2]该种衬衫每涨价3元,售量减少20件。想赚得利润12000元,请问售价应定为多少元?每月应进货多少?[变式3]某商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,该种衬衫每涨价1元,售量减少10件。商场能否每月赚得利润10000元,请说明理由?[变式4]某商场将进价为40元的衬衫按50元售出时,每月能卖出500件,经市场调查,该种衬衫每涨价1元,售量减少10件。商场每月能赚得最大利润为多少元?售价应定为多少元?每月应进货多少?本题是列一元二次方程解应用题。列一元二次方程可以解决生活中的行程、工程、浓度、利润等一些问题,在设未知数解决这些问题时,要审清题意,直接或间接设好未知数,找对等量关系。在教学中,本人抓住问题的本质,对题目进行精心变式,达到举一反三的效果。3.复习课中的变式教学复习课教学旨在引导学生将学习的知识系统化,同时教师适当地精选习题,训练学生的解题技巧和方法。目前,不少教师在上复习课时,总是让学生做大量的习题,诸如第一类练习,第二类练习等,企图覆盖各种习题和内容的解法,这样的题海战术必然会造成学生负担过重的后果。为了避免这一弊端,本人在上复习课时采取了精选习题进行变式训练的方式。在“有理数混合运算”的复习课教学中,本人安排如下的练习:3×(2)2-6÷(-3)(-1)101×|-2|,学生完成后,可将后面的底数-1换成(1-7)÷6,再逐步增加中括号或绝对值得到如下三种变式题。[变式1]3×(2)2-6÷(-3)(1-7)÷6]101×|-2|[变式2]3×[(2)2-6]÷(-3)[(1-7)÷6]101×|-2|[变式3]3×[(2)2-6]÷[(-3)[(1-7)÷6]101×|-2|通过以上三种不同形式的变式练习,学生对有理数混合运算法则有了深刻的理解,特别是运算顺序,使学生了解到“”不仅代表绝对值符号,而且具有括号的作用。不管是哪种变式教学,重要的是要选好“变