如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
周末作业(6月21-23)⒈复数(其中为虚数单位)在复平面上对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2、则k=A.1B.2C.3D.43、已知随机变量ξ服从正态分布N(0,σ2).若P(ξ>2)=0.023,则P(-2≤ξ≤2)=A.0.477B.0.628C.0.954D.0.9774、满足条件|z-i|=|3+4i|的复数z在复平面上对应点的轨迹是A.一条直线B.两条直线C.圆D.椭圆5、下列三个判断:①某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为;②名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;③从总体中抽取的样本(x1,y1),(x2,y2),…(xn,yn),则回归直线必过点其中正确的个数有:A.0个B.1个C.2个D.3个6、将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为A.10B.20C.30D.40⒍已知离散型随机变量的的分布列如右表,则A.B.C.D.否是开始输入图2输出结束整除?⒎阅读图2的程序框图,若输入,则输出A.B.C.D.⒏将正偶数按下表排列第1列第2列第3列第4列第5列第一行2468第二行16141210第三行18202224第四行32302826………………则2012所在的位置是A.第252行第3列B.第252行第4列C.第251行第3列D.第251行第4列9、若复数i·(1+ai)是纯虚数,则实数a的值是A.1B.-1C.0D.0或-110、已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f′1(x),f3(x)=f′2(x),…,fn+1(x)=f′n(x),n∈N*,则f2012(x)=A.sinx+cosxB.sinx-cosxC.-sinx+cosxD.-sinx-cosx11、若a,b,c>0且,则2a+b+c的最小值为A.B.C.3D.二、填空题:1、已知集合A={x||x|≤2,x∈R},,则A∩B=___.2、某射手射击所得环数ξ的分布列如下:ξ78910Px0.10.3y已知ξ的期望Eξ=8.9,则y的值为______.3、观察数列,,,,……,的规律,它的第6项是______.4、左口袋里装有3个红球,2个白球,右口袋里装有1个红球,4个白球.若从左口袋里取出1个球装进右口袋里,掺混好后,再从右口袋里取出1个球,这个球是红球的概率为______.5、已知函数f(x)是定义在R上的奇函数,f(1)=0,当x>0时有成立,则不等式f(x)>0的解集是______.6.若,,.7.的展开式中,的系数是____(用数字表示).8.曲线,,围成的图形的面积(用数字表示).9.如图,切⊙于点,割线经过圆心,弦⊥于点,,,则=_______,=___________.10.圆锥曲线(是参数)和定点A(0,),F1、F2是圆锥曲线的左、右焦点,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则直线AF2的极坐标方程为..___________________.三、解答题:1.已知函数,.⑴求的值;⑵求函数的单调递增区间.2.图3如图3,正方体的棱长为,、分别是、的中点.⑴求多面体的体积;⑵求与平面所成角的余弦值.3、某种产品的广告费用支出x(万元)与销售额y(万元)x24568y3040605070之间有如下的对应数据:(1)画出散点图;(2)求回归直线方程;(3)据此估计广告费用为9万元时,销售收入y的值.注:①参考公式:线性回归方程系数公式;②参考数据:,,.4.已知某同学上学途中必须经过三个交通岗,且在每一个交通岗遇到红灯的概率均为,假设他在3个交通岗是否遇到红灯是相互独立的,用随机变量表示该同学上学途中遇到红灯的次数.⑴求该同学在第一个交通岗遇到红灯,其它交通岗未遇到红灯的概率;⑵若,则该同学就迟到,求该同学不迟到的概率;⑶随机变量的数学期望和方差.5、已知的展开式的第5项的二项式系数与第3项的二项式系数之比为14:3.(1)求正自然数n的值;(2)求展开式中的常数项.6、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计男生5女生10合计50已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为0.6.(1)请将上面的列联表补充完整(不用写计算过程);(2)能否在犯错误