2021-2022学年新教材高中数学 第二章 圆锥曲线 2.docx
上传人:和裕****az 上传时间:2024-09-12 格式:DOCX 页数:7 大小:90KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2021-2022学年新教材高中数学 第二章 圆锥曲线 2.docx

2021-2022学年新教材高中数学第二章圆锥曲线2.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第二章圆锥曲线§2双曲线2.1双曲线及其标准方程课后篇巩固提升合格考达标练1.双曲线方程为x2-2y2=1,则它的右焦点坐标为()A.22,0B.62,0C.52,0D.(3,0)答案B解析将双曲线方程化为标准方程为x2-y212=1,∴a2=1,b2=12,∴c2=a2+b2=32,∴c=62,故右焦点坐标为62,0.2.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,若|PF1|-|PF2|=b,且双曲线的焦距为25,则该双曲线的方程为()A.x24-y2=1B.x23-y22=1C.x2-y24=1D.x22-y23=1答案C解析由题意得|PF1|-|PF2|=2a=b,c2=a2+b2,2c=25,解得a2=1,b2=4,则该双曲线的方程为x2-y24=1.3.已知双曲线x2λ-3+y22-λ=1,焦点在y轴上,若焦距为4,则λ等于()A.32B.5C.7D.12答案D解析根据题意可知,双曲线的标准方程为y22-λ-x23-λ=1.由其焦距为4,得c=2,则有c2=2-λ+3-λ=4,解得λ=12.4.已知双曲线x24-y25=1上一点P到左焦点F1的距离为10,则PF1的中点N到坐标原点O的距离为()A.3或7B.6或14C.3D.7答案A解析连接ON,ON是△PF1F2的中位线,∴|ON|=12|PF2|,∵||PF1|-|PF2||=4,|PF1|=10,∴|PF2|=14或|PF2|=6,∴|ON|=7或|ON|=3.5.如图,已知双曲线的方程为x2a2-y2b2=1(a>0,b>0),点A,B均在双曲线的右支上,线段AB经过双曲线的右焦点F2,|AB|=m,F1为双曲线的左焦点,则△ABF1的周长为()A.2a+2mB.4a+2mC.a+mD.2a+4m答案B解析由双曲线的定义,知|AF1|-|AF2|=2a,|BF1|-|BF2|=2a.又|AF2|+|BF2|=|AB|,所以△ABF1的周长为|AF1|+|BF1|+|AB|=4a+2|AB|=4a+2m.6.与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆P的圆心在()A.一个椭圆上B.一个圆上C.一条抛物线上D.双曲线的一支上答案D解析由x2+y2-8x+12=0,得(x-4)2+y2=4,画出圆x2+y2=1与(x-4)2+y2=4的图象如图,设圆P的半径为r,∵圆P与圆O和圆M都外切,∴|PM|=r+2,|PO|=r+1,则|PM|-|PO|=1<4,∴点P在以O,M为焦点的双曲线的左支上.7.以椭圆x23+y24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的标准方程是.答案y2-x23=1解析由题意知,双曲线的焦点在y轴上,设双曲线的标准方程为y2a2-x2b2=1,则a=1,c=2,所以b2=3,所以双曲线的标准方程为y2-x23=1.8.已知点F1,F2分别是双曲线x29-y216=1的左、右焦点,若点P是双曲线左支上的点,且|PF1|·|PF2|=32,则△F1PF2的面积为.答案16解析因为P是双曲线左支上的点,所以|PF2|-|PF1|=6,两边平方得|PF1|2+|PF2|2-2|PF1|·|PF2|=36,所以|PF1|2+|PF2|2=36+2|PF1|·|PF2|=36+2×32=100.在△F1PF2中,由余弦定理,得cos∠F1PF2=|PF1|2+|PF2|2-|F1F2|22|PF1|·|PF2|=100-1002|PF1|·|PF2|=0,所以∠F1PF2=90°,所以S△F1PF2=12|PF1|·|PF2|=12×32=16.9.已知与双曲线x216-y29=1共焦点的双曲线过点P-52,-6,求该双曲线的标准方程.解已知双曲线x216-y29=1,则c2=16+9=25,∴c=5.设所求双曲线的标准方程为x2a2-y2b2=1(a>0,b>0).依题意知b2=25-a2,故所求双曲线方程可写为x2a2-y225-a2=1.∵点P-52,-6在所求双曲线上,∴代入有(-52)2a2-(-6)225-a2=1,化简得4a4-129a2+125=0,解得a2=1或a2=1254.当a2=1254时,b2=25-a2=25-1254=-254<0,不合题意,舍去,∴a2=1,b2=24,∴所求双曲线的标准方程为x2-y224=1.等级考提升练10.“mn<0”是方程“mx2+ny2=1表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D