任务十八梁的主应力和主应力迹线.ppt
上传人:天马****23 上传时间:2024-09-11 格式:PPT 页数:23 大小:415KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

任务十八梁的主应力和主应力迹线.ppt

任务十八梁的主应力和主应力迹线.ppt

预览

免费试读已结束,剩余 13 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

教学内容1、一点的应力状态的概念2、平面应力状态分析3、梁的主应力和主应力迹线的概念一、应力状态平面应力状态:在单元体的三对表面中,只要有一对表面上应力为零,则称这种应力状态为平面应力状态。2、研究应力状态的目的分析破坏的原因建立复杂应力强度条件的前提3、研究的内容1.研究一点处的应力状态;2.研究一点处的应变状态;3.研究应力与应变之间的关系;前面单元研究了梁在横截面上的应力分布规律及其计算,并建立了横截面正应力和剪应力的强度条件:但实际上梁还可能沿斜截面发生破坏。例如图1所示的钢筋混凝土梁,在荷载作用下,除了在跨中产生竖向裂缝外,支座附近会发生斜向裂缝。这说明在梁的斜截面上也存在着导致破坏的应力。当研究梁内任意一点A斜截面上的应力时,围绕点A取出一个边长为dx的无限小的单元体abcd(图2)。由于单元体的边长为无穷小,可以认为各平面上的应力是均匀分布的,且平行面上的应力是相同的。单元体两横截面ab、dc上的应力σ和τ分别为σ=M/Iy,τ=QSz/Izb单元体上、下面ad、bc上的应力可由剪应力互等定律得到(图2(b)。取任意斜截面ef,其外法线n与x轴的夹角为α,规定由x轴转到外法线n为逆时针转向时,则α为正。图2取ebf为研究对象(图12.27(d))。若ef面的面积为dA,则eb面和bf面的面积分别为dAcosα和dAsinα(图12.27(e))。取垂直和平行于斜截面的坐标轴n和τ。列平衡方程将三角公式cos2α=(1+cos2α)/22sinαcosα=sin2αcos2α-sin2α=cos2α1、主应力和主平面对式(1)取导数并令dσα/dα=0得σ/2sin2α+τcos2α=0剪应力等于零的截面称为主平面,主平面上的应力称为主应力。主应力按其代数值排列顺序,并分别用σ1、σ2、σ3表示,且σ1≥σ2≥σ3主平面的位置可由上式确定,即tan2α0=-2τ/σ求得最大主应力σ1和最小主应力σ3:表明最大剪应力等于最大主应力与最小主应力之差的一半。比较式(3)和式(4)可以看出tan2α1=-cot2α0=tan(2α0+90°)可见剪应力极值所在的平面与主平面的夹角为45°。2、切应力极值及其所在平面【例1】求图3(a)所示梁内某点单元体的主应力值及其所在的位置。【解】(1)计算主应力值根据公式,可得σ1==(-20+20√2)MPa=8.28MPaσ3=(-20-20√2)MPa=-48.28MPa(2)计算主平面的位置根据公式(12.15),可得tan2α0=-2τ/σ=-2×10/-20=1由三角函数知2α0=45°,α0=22.5°则α0′=α0+90°=22.5°+90°=112.5°主应力及其所在位置如图3(b)所示。图3由于应力组合有各种可能,要采用试验的方法建立强度条件是难以达到的。因此,这类问题应根据材料在各种情况下的破坏现象,运用判断、推理的方法,提出一些假说,说明材料的破坏无论是单向应力状态还是复杂应力状态,都是由同一个因素所引起。于是,可以利用单向应力状态的实验结果,建立复杂应力状态下的强度条件。这种假说称为强度理论。最大剪应力理论(第三强度理论)这一理论认为:材料塑性破坏的主要因素是最大剪应力。也就是说,无论是在复杂应力状态还是在单向应力状态下,只要材料危险点处的最大剪应力达到轴向拉伸破坏时的最大剪应力值,材料就发生塑性破坏。第三强度理论的强度条件为形状改变比能理论(第四强度理论)这一理论认为:形状改变比能是引起材料塑性破坏的主要因素。经过推演后,可得到第四强度理论的强度条件为【例12.11】用20a号工字钢制成的简支梁如图4(a)所示。已知材料的许用应力[σ]=150MPa,[τ]=95MPa。试对此梁进行全面的强度校核。【解】(1)画剪力图和弯矩图,确定危险截面画出梁的剪力图和弯矩图,如图4(b)、(c)所示。在截面C和D上不但弯矩最大,而且剪力也是最大,所以它们是危险截面。任选其中一个截面,例如截面C进行强度校核。在截面C上的内力为Mmax=32kN·mQmax=100kN由型钢表查得20a号工字钢:Iz=2370cm4,Wz=237cm3,Iz/Szmax=17.2cm,其截面尺寸如图4(d)所示。(2)正应力强度校核(K1点)σmax=Mmax/Wz=32×106/237×103MPa=135MPa<[σ](3)剪应力强度校核(K3点)τmax=Qmax/(Iz/Szmax·d)·100×103/(17.2×10×7)MPa=83.1MPa<[