22.3.实际问题-与二次函数课件.pptx
上传人:骑着****猪猪 上传时间:2024-09-14 格式:PPTX 页数:18 大小:2.1MB 金币:20 举报 版权申诉
预览加载中,请您耐心等待几秒...

22.3.实际问题-与二次函数课件.pptx

22.3.实际问题-与二次函数课件.pptx

预览

免费试读已结束,剩余 8 页请下载文档后查看

20 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

会计学2.二次函数y=ax2+bx+c的图象是一条,它的对称轴是,顶点坐标是.当a>0时,抛物线开口向,有最点,函数有最值,是;当a<0时,抛物线开口向,有最点,函数有最值,是。3.二次函数y=2(x-3)2+5的对称轴是,顶点坐标是。当x=时,y的最值是。4.二次函数y=-3(x+4)2-1的对称轴是,顶点坐标是。当x=时,函数有最值,是。5.二次函数y=2x2-8x+9的对称轴是,顶点坐标是.当x=时,函数有最值,是。//探究1:用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是函数图象的最高点,也就是说,当l取顶点的横坐标时,这个函数有最大值.一般地,因为抛物线y=ax2+bx+c的顶点是最低(高)点,所以当时,二次函数y=ax2+bx+c有最小(大)值.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?(0≤X≤30)在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。归纳小结:可设这条抛物线表示的二次函数为y=ax2.如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用表示.(1)一辆货运卡车高4m,宽2m,它能通过该隧道吗?(2)如果该隧道内设双行道,那么这辆货运卡车是否可以通过?某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在半个月内获得最大利润?(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.同学们再见!