如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
1.会建立直角坐标系解决实际问题;2.会解决与桥洞水面宽度有关的类似问题.(1)磁盘最内磁道的半径为rmm,其上每0.015mm的弧长为一个存储单元,这条磁道有多少个存储单元?(2)磁盘上各磁道之间的宽度必须不小于0.3mm,磁盘的外圆周不是磁道,这张磁盘最多有多少条磁道?(3)如果各磁道的存储单元数目与最内磁道相同,最内磁道的半径r是多少时,磁盘的存储量最大?你能说出r为多少时y最大吗?我们来比较一下解法一:如图所示以抛物线的顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系.当水面下降1m时,水面的纵坐标为y=-3,这时有:解法二:如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.当拱桥离水面2m时,水面宽4m解法三:如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.当水面下降1m时,水面的纵坐标为y=-1,这时有:1.理解问题;1.(江津中考)如图,等腰Rt△ABC(∠ACB=90º)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()2.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为,则水柱的最大高度是().A.2B.4C.6D.2+3.已知二次函数的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m为不等于1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个4.某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.解析:如图,以AB所在的直线为x轴,以AB的垂直平分线为y轴,建立平面直角坐标系.∵抛物线过A(-2,0)5.(南充中考)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数图象如图:(1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?【解析】(1)工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数解析式为:y=kx+b.该函数图象过点(0,300),(500,200)∴500k+b=200解得k=-b=300b=300∴y=-x+300(x≥0)当电价x=600元/千度时,该工厂消耗每千度电产生利润y=600+300=180(元/千度)(2)设工厂每天消耗电产生利润为w元,由题意得:W=my=m(-x+300)=m[-(10m+500)+300]化简配方,得:w=-2(m-50)2+5000由题意,m≤60,∴当m=50时,w最大=5000即当工厂每天消耗50千度电时,工厂每天消耗电产生利润最大为5000元.抽象