如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
《二次函数》教案《二次函数》教案作为一名无私奉献的老师,通常需要用到教案来辅助教学,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么写教案需要注意哪些问题呢?以下是小编整理的《二次函数》教案,仅供参考,欢迎大家阅读。《二次函数》教案1二次函数的性质与图像(第2课时)一学习目标:1、掌握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二知识点回顾:函数的性质函数函数图象a0性质三典型例题:例1:已知是二次函数,求m的值例2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。(2)已知在区间[0,1]内有最大值-5,求a。(3)已知,a0,求的最值。四、限时训练:1、如果函数在区间上是增函数,那么实数a的取值范围为BA、a-2B、a-2C、a-6D、B、a-62、函数的定义域为[0,m],值域为[,-4],则m的取值范围是A、B、C、D、3、定义域为R的二次函数,其对称轴为y轴,且在上为减函数,则下列不等式成立的是A、B、C、D、4、已知函数在[0,m]上有最大值3,最小值2,则m的取值范围是A、B、C、D、5、函数,当时是减函数,当时是增函数,则f(2)=6、已知函数,有下列命题:①为偶函数②的图像与y轴交点的纵坐标为3③在上为增函数④有最大值47、已知在区间[0,1]上的`最大值为2,求a的值。8、已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。9、已知函数,求a的取值范围使在[-5,5]上是单调函数。10、设函数,当时a恒成立,求a的取值范围。《二次函数》教案2教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。教学过程:一、情境创设一次函数y=x+2的.图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。(3)求方程x2-x-6=0的解。(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。三、例题分析例1.不画图象,判断下列函数与x轴交点情况。(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。(1)请写出方程ax2+bx+c=0的根(2)列举一个二次函数,使其图象与x轴交于(1,0)和(4,0),且适合这个图象。2.列举一个二次函数,使其图象开口向上,且与x轴交于(-2,0)和(1,0)五、小结这节课我们有哪些收获?六、作业求证:二次函数y=x2+ax+a-2的图象与x轴一定有两个不同的交点。《二次函数》教案3知识技能1.能列出实际问题中的二次函数关系式;2.理解二次函数概念;3.能判断所给的函数关系式是否二次函数关系式;4.掌握二次函数解析式的几种常见形式.过程方法从实际问题中感悟变量间的二次函数关系,揭示二次函数概念.学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义情感态度使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。教学重点理解二次函数的意义,能列出实际问题中二次函数解析式教学难点能列出实际问题中二次函数解析式教学过程设计教学程序及教学内容师生行为设计意图一、情境引入播放