圆与二次函数综合教案.doc
上传人:sy****28 上传时间:2024-09-11 格式:DOC 页数:8 大小:1.1MB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

圆与二次函数综合教案.doc

圆与二次函数综合教案.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

质量至上精益求精一、教学目的与考点分析1.教学目的:圆和二次函数、三角形的综合题型训练提高2.考点分析难点:代数与几何知识的综合应用二、教学内容及步骤1.如图所示,在平面直角坐标系Oxy中,已知点A(-EQ\f(9,4),0),点C(0,3),点B是x轴上一点(位于点A的右侧),以AB为直径的圆恰好经过点C.(1)求∠ACB的度数;(2)已知抛物线y=ax2+bx+3经过A、B两点,求抛物线的解析式;(3)线段BC上是否存在点D,使△BOD为等腰三角形.若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由。2.(2010昆明)在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点.(1)求此抛物线的解析式;(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)3.已知二次函数的图象如图.(1)求它的对称轴与轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与轴,轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.4、已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;AABBOOxxyy图①图②(3)连接OA、AB,如图②,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由。5、如图,在直角坐标系中,以点M(3,0)为圆心,以6为半径的圆分别交x轴的正半轴于点A,交x轴的负半轴交于点B,交y轴的正半轴于点C,过点C的直线交x轴的负半轴于点D(-9,0)求A、C两点的坐标;求证直线CD是⊙M的切线‘若抛物线经过M、A两点,求此抛物线的解析式;连接AC,若(3)中抛物线的对称轴分别与直线CD交于点E,与AC交于点F。如果点P是抛物线上的动点,是否存在这样的点P,使得S△PAM:S△CEF=3:3,若存在,请求出此时点P的坐标;若不存在,请说明理由。(注意:本题中的结果均保留根号)6、如图,二次函数()的图象与轴交于两点,与轴相交于点.连结两点的坐标分别为、,且当和时二次函数的函数值相等.(1)求实数的值;(2)若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为秒时,连结,将沿翻折,点恰好落在边上的处,求的值及点的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以为项点的三角形与相似?如果存在,请求出点的坐标;如果不存在,请说明理由.7、如图11,已知二次函数的图象与轴相交于两个不同的点、,与轴的交点为.设的外接圆的圆心为点.(1)求与轴的另一个交点D的坐标;(2)如果恰好为的直径,且的面积等于,求和的值.8、已知:在平面直角坐标系中,一次函数的图象与轴交于点,抛物线经过,两点.⑴试用含的代数式表示;⑵设抛物线的顶点为,以为圆心,为半径的圆被轴分为劣弧和优弧两部分.若将劣弧沿轴翻折,翻折后的劣弧落在⊙内,它所在的圆恰与相切,求⊙半径的长及抛物线的解析式;⑶设点是满足()中条件的优弧上的一个动点,抛物线在轴上方的部分上是否存在这样的点,使得?若存在,求出点的坐标;若不存在,说明理由.9、如图,在平面直角坐标系中,以点为圆心,半径为的圆交轴正半轴于点,是的切线.动点从点开始沿方向以每秒个单位长度的速度运动,点从点开始沿轴正方向以每秒个单位长度的速度运动,且动点、从点和点同时出发,设运动时间为(秒).⑴当时,得到、两点,求经过、、三点的抛物线解析式及对称轴;⑵当为何值时,直线与相切?并写出此时点和点的坐标;⑶在⑵的条件下,抛物线对称轴上存在一点,使最小,求出点N的坐标并说明理由.10、如图,点,以点为圆心、为半径的圆与轴交于点.已知抛物过点和,与轴交于点.⑴求点的坐标,并画出抛物线的大致图象.⑵点在抛物线上,点为此抛物线对称轴上一个动点,求最小