三角形全等的条件.doc
上传人:qw****27 上传时间:2024-09-10 格式:DOC 页数:7 大小:67KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

三角形全等的条件.doc

三角形全等的条件.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

--§13.2三角形全等的条件课时安排4课时从容说课对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步.它是两个三角形间最简单、最常见的关系.它不仅是学习后面知识的基础,而且也是证明线段相等、角相等以及两直线垂直、平行的重要依据.因此,必须熟练地掌握全等三角形的判定方法,并且能灵活地应用.为了探索三角形全等的条件,教材安排了8个探究活动,通过探究活动,让学生比较充分地实践、探索和交流,寻找出三角形全等的条件,从而总结出四个证明三角形全等的条件,从而总结出四个证明三角形全等的规律.同时也训练了学生的基本作图能力和分类讨论能力.任何事物都有它的特殊性,本节中通过探究8还发现了证明直角三角形全等的规律.数学来源于生活,又服务于实践,通过本节学习要让学生掌握简单的证明三角形全等的方法,初步了解几何证明题的书写方法.通过设计这些探究活动,让学生经历操作、观察、探索、交流、发现、归纳等数学活动,积累研究问题的经验和方法,发展实践能力和创新精神.§13.2.1三角形全等的条件(一)第二课时教学目标(一)教学知识点1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.(二)能力训练要求1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.掌握三角形全等的“SSS”条件,了解三角形的稳定性.3.能运用“SSS”证明简单的三角形全等问题.(三)情感与价值观要求1.让学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方法和享受良好的情感体验.2.让学生体验数学来源于生活,又服务于生活的辩证思想.教学重点三角形全等的条件.教学难点寻求三角形全等的条件.教学方法引导、讨论教学法.教具准备投影片四张.教学过程Ⅰ.创设情境,引入新课[师]出示投影片一,回忆前面研究过的全等三角形.已知△ABC≌△A′B′C′,找出其中相等的边与角.[生]图中相等的边是:AB=A′B、BC=B′C′、AC=A′C.相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.[师]很好,老师这里有一个三角形纸片,你能画一个三角形与它全等吗?怎样画?[生]能,先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等.[师]这位同学利用了全等三角形的定义来作图.请问,是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.Ⅱ.导入新课出示投影片二1.只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm.②三角形两内角分别为30°和50°.③三角形两条边分别为4cm、6cm.学生活动:分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.(学生可能会发现:给出两内角,根据三角形内角和为180°,则第三角一定确定,所给出两内角,就相当于已知三内角.对此教师要极力肯定.否则教师可以在这点上加以引导).可以发现按这些条件画出的三角形都不能保证一定全等.[师]那么,给出三个条件画三角形,你能说出有几种可能的情况吗?[生]四种可能.即:三内角、三条边、两边一内角、两内有一边.[师]在大家刚才的探索中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.出示投影片三做一做:已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?学生活动:1.讨论作法.2.比较、验证结果.3.探究、发现、总结规律.教师活动:教师可参与到学生的制作与讨论中,及时发现问题,因势利导.活动结果展示:1.作图方法:先画一线段AB,使得AB=6cm,再分别以A、B为圆心,8cm、10cm为半径画弧,两弧交点记作C,连结线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为AB=6cm,AC=8cm,BC=10cm.2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律