三角形全等的条件(3).doc
上传人:qw****27 上传时间:2024-09-10 格式:DOC 页数:8 大小:183KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

三角形全等的条件(3).doc

三角形全等的条件(3).doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

--§13.2.3三角形全等的条件(三)第四课时教学目标(一)教学知识点1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.(二)能力训练要求1.经历探究全等三角形条件的过程,进一步体会操作、归纳获得数学规律的过程.2.掌握三角形全等的“角边角”“角角边”条件.3.能运用全等三角形的条件,解决简单的推理证明问题.(三)情感与价值观要求通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神.教学重点已知两角一边的三角形全等探究.教学难点灵活运用三角形全等条件证明.教学方法自学疏导法.教具准备多媒体课件.教学过程Ⅰ.提出问题,创设情境1.复习:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义;②SSS;③SAS.2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?Ⅱ.导入新课[师]三角形中已知两角一边有几种可能?[生]1.两角和它们的夹边.2.两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).[师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长.②画线段A′B′,使A′B′=AB.③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.④射线A′D与B′E交于一点,记为C′即可得到△A′B′C′.将△A′B′C′与△ABC重叠,发现两三角形全等.[师]于是我们发现规律:两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).这又是一个判定三角形全等的条件.[生]在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?[师]你提出的问题很好.温故而知新嘛,请同学们来验证这种想法.出示探究问题:如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°∠A=∠D,∠B=∠E∴∠A+∠B=∠D+∠E∴∠C=∠F在△ABC和△DEF中∴△ABC≌△DEF(ASA).于是得规律:两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可.学生写出证明过程.证明:在△ADC和△AEB中所以△ADC≌△AEB(ASA)所以AD=AE.[师]到此为止,在三角形中已知三个条件探索三角形全等问题已全部结束.请同学们把三角形全等的判定方法做一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.有五种判定三角形全等的条件.1.全等三角形的定义2.边边边(SSS)3.边角边(SAS)4.角边角(ASA)5.角角边(AAS)推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.Ⅲ.随堂练习(一)课本P99练习1、2.学生板演.1.[生甲]解:在△ABC和△EDC中所以△ABC≌△EDC(ASA)所以AB=DE.即测得DE的长就是AB的长.2.[生乙]证明:在△ABC和△ADC中∴△ABC≌△ADC(AAS)∴AB=AD.(二)补充练习图中的两个三角形全等吗?请说明理由.答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.Ⅳ.课时小结至此,我们有五种判定三角形全等