复数的基本概念与基本运算.doc
上传人:sy****28 上传时间:2024-09-13 格式:DOC 页数:71 大小:100KB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

复数的基本概念与基本运算.doc

复数的基本概念与基本运算.doc

预览

免费试读已结束,剩余 61 页请下载文档后查看

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1一、《考试说明》中复数的考试内容(1)数的概念的发展,复数的有关概念(实数、虚数、纯虚数、复数相等、共轭复数、模);(2)复数的代数表示与向量表示;(3)复数的加法与减法,复数的乘法与除法,复数的三角形式,复数三角形式的乘法与乘方,复数三角形式的除法与开方;(4)复数集中解实系数方程(包括一元二次方程、二项方程)。二、考试要求(1)使学生了解扩充实数集的必要性,正确理解复数的有关概念.掌握复数的代数、几何、三角表示及其转换;(2)掌握复数的运算法则,能正确地进行复数的运算,并理解复数运算的几何意义;(3)掌握在复数集中解实数系数一元二次方程和二项方程的方法.(4)通过内容的阐述,带综合性的例题和习题的训练,继续提高学生灵活运用数学知识解题的能力.(5)通过数的概念的发展,复数、复平面内的点及位置向量三者之间的联系与转换的复习教学,继续对学生进行辩证观点的教育.三、学习目标(1)联系实数的性质与运算等内容,加强对复数概念的认识;(2)理顺复数的三种表示形式及相互转换:z=r(cosθ+isinθ)?OZ→(Z(a,b))?z=a+bi(3)正确区分复数的有关概念;(4)掌握复数几何意义,注意复数与三角、解几等内容的综合;(5)正确掌握复数的运算:复数代数形式的加、减、乘、除;三角形式的乘、除、乘方、开方及几何意义;虚数单位i及1的立方虚根ω的性质;模及共轭复数的性质;(6)掌握化归思想——将复数问题实数化(三角化、几何化);(7)掌握方程思想——利用复数及其相等的有关充要条件,建立相应的方程,转化复数问题。四、本章知识结构与复习要点1.知识体系表解复数集纯虚数集实数集22.复数的有关概念和性质:(1)i称为虚数单位,规定21i??,形如a+bi的数称为复数,其中a,b∈R.(2)复数的分类(下面的a,b均为实数)(3)复数的相等设复数1112221122,(,,,)zabizabiababR?????,那么12zz?的充要条件是:1122abab??且.(4)复数的几何表示复数z=a+bi(a,b∈R)可用平面直角坐标系内点Z(a,b)来表示.这时称此平面为复平面,x轴称为实轴,y轴除去原点称为虚轴.这样,全体复数集C与复平面上全体点集是一一对应的.3复数z=a+bi??,abR?.在复平面内还可以用以原点O为起点,以点Z(a,b)向量所成的集合也是一一对应的(例外的是复数0对应点O,看成零向量).(7)复数与实数不同处①任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小.②实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻.3.有关计算:⑴ni??*nN?怎样计算?(先求n被4除所得的余数,rrkii??4??*,kNrN??)⑵ii2321232121????????、是1的两个虚立方根,并且:13231????221???122???211???121???21???12???121?????⑶复数集内的三角形不等式是:212121zzzzzz?????,其中左边在复数z1、z2对应的向量共线且反向(同向)时取等号,右边在复数z1、z2对应的向量共线且同向(反向)时取等号。⑷棣莫佛定理是:??))(sin(cos)sin(cosZnninrirnn????????⑸若非零复数)sin(cos??irz??,则z的n次方根有n个,即:)1210)(2sin2(cos??????nknkinkrznk,,,,?????它们在复平面内对应的点在分布上有什么特殊关系?nrn4⑹若121)3sin3(cos32zizz??????,,复数z1、z2对应的点分别是A、B,则△AOB(O为坐标原点)的面积是333sin6221?????