如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第三篇润滑理论流体润滑理论,是利用流体力学基本理论求解摩擦学的润滑问题,假定润滑剂为连续介质,它的流动服从牛顿定律。研究对象:粘性流体解决问题:润滑剂流动与作用力的关系解决方法:物理学的基本方程(粘性流体力学中的基本方程),结合流体润滑的特点进行简化计算7.1流体润滑的形式与状态流体静压润滑:润滑剂供应系统提供的压力将两个润滑表面(可以有运动,也可以不运动)分离开设计重点:如何选择合适液压、气压系统,如供油泵的选择、油路的设计、节流方式与所需支撑性能的关系等。按润滑介质分类:液体润滑和气体润滑(1)液体润滑:各种液体作润滑剂,由液膜将轴颈与轴瓦分开润滑介质;各种润滑油,但也有用水、液氢、液氦、液氧和高聚物优点:承载能力高、支撑刚度高、阻尼大、精度高、寿命长等缺点:(气体润滑相比)摩擦力大,温升高一般不用于高、低温环境(性能限制)等。气体润滑:气体作润滑剂,由气膜将两个工作表面分开。润滑介质:空气,也用氢、氦、一氧化碳及水蒸汽等介质。与液体相比:气体的粘度低,粘度随温度变化小,化学稳定性好。优点:摩擦小、精度高、速度高、温升低、寿命长、耐高低温及原子辐射,对主机和环境无污染等。缺点:承载能力小、刚度低、稳定性差、对加工、安装和工作条件要求严格等。7.2流体润滑的基本方程包括流体力学中的连续方程、动力学方程、能量方程由高斯定理,将面积分改写为体积分,即在直角坐标系中,速度向量vn和梯度向量的表达式为(7.5)(7.6)(7.7)式中,、、分别为沿x、y、z方向的速度。圆柱座标系下表达式可用座标变换求得。7.2.2流体动力学方程由于X方向有流体运动的表达2.压力p前面已给出了直角坐标系下的应力张量表达式(7.16)定义根据剪应力互等定律,因此,式(7.16)表示了一个二阶对称应力张量,根据应力张量的性质,应力张量中的法向应力之和x+y+z为一个常量,通常这三个法向应力的平均值负数用流体压力p来表示,即:(7.18)式中,加入负号的用意是,流体所受的为压应力时,p为正值。3.广义牛顿粘性定律generalNewtonianviscositylaw假设润滑流体满足以下关系:(1)流体是连续的,应力张量与变形速率张量呈线性关系;(2)流体各向同性,其性质与方向无关;(3)当流体静止时,即变形速率为零时,流体中的压力就是流体静压力。(7-19)牛顿提出如果粘性流体作直线层状运动时,流体层之间的应力与其速度梯度成正比,即(7.20)牛顿粘性定律式(7.20)称为牛顿粘性定律。将式(7.20)推广到三维流动的情况下,有:(,i,j=x,y,z)(7.21)张量形式的牛顿粘性定律可写成(7.22)式中,m为流体控制单元的体变形m=(x+y+z)/3式(7.22)为广义牛顿粘性定律,它表示畸变应力张量与畸变变形速率张量间的比例关系。通常把满足式(7.22)的流体称为牛顿流体或stockes流体,不满足的称为非牛顿流体。4.Navier-Stokes方程将广义牛顿粘性定律式(7.22)代入流体动力学方程(7.11)消去各应力分量可得在直角坐标系下,对不可压缩流体与等温流动,因为v=0,=常数,式(7.23)变成h05.Navier-Stokes方程简化Navier-Stokes方程是一个二阶非线性偏微分方程,只有在极少数特殊情况下才能得到解析解。通常在略去高阶小量的基础上进行简化,采用归一化的处理。(偏微分方程,对其产生影响的是变量的变化率,而非变量值本身的大小)(7.25)h0为润滑膜厚度方向上的长度单位,L为润滑膜另外两个方向上的长度单位,V为润滑膜厚度方向上的速度单位,Ux为润滑膜另外两个方向上的速度单位,ρ0、t0、μ0、p0和g分别为在给定情况下的密度、温度、动力粘度、压力值及体积力、重力加速度的相对单位h0为某已知点处的流体膜厚度。根据实验测量结果得知,流体润滑膜的厚度h0远小于x、z方向的结构特征尺寸。以x方向为例,如果润滑表面在x方向上的结构特征尺寸为L,则h0/L<<1,将式(7.25)带入式(7.24a),可得。.将全式除以并取,比较各项的系数,并略去式中ψ级小量项,引入雷诺数:Re=弗鲁德数,则式(7.26)可改写为(7.27)当,<<1时,惯性项,体力项可略去。这样式(7.27)变为无量纲方程(7.28)取压力相对单位,此时式(7.28)变为(7.29)同样的方法可简化式(7.24b)和式(7.24c)得(7.30)(7.31)