如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
许多实际问题的解决都需要求出一次函数的表达式.怎样才能简便地求出一次函数的表达式呢?如图4-14,已知一次函数的图象经过P(0,-1),Q(1,1)两点.怎样确定这个一次函数的表达式呢?因为一次函数的一般形式是y=kx+b(k,b为常数,k≠0),要求出一次函数的表达式,关键是要确定k和b的值(即待定系数).因为P(0,-1)和Q(1,1)都在该函数图象上,因此它们的坐标应满足y=kx+b,将这两点坐标代入该式中,得到一个关于k,b的二元一次方程组:像这样,通过先设定函数表达式(确定函数模型),再根据条件确定表达式中的未知系数,从而求出函数的表达式的方法称为待定系数法.温度的度量有两种:摄氏温度和华氏温度.水的沸点温度是100℃,用华氏温度度量为212℉;水的冰点温度是0℃,用华氏温度度量为32℉.已知摄氏温度与华氏温度的关近似地为一次函数关系,你能不能想出一个办法方便地把华氏温度换算成摄氏温度?用C,F分别表示摄氏温度与华氏温度,由于摄氏温度与华氏温度的关系近似地为一次函数关系,因此可以设在上述例子中,由于我们求出了摄氏温度与华氏温度的函数关系式,因此可以方便地把任何一个华氏温度换算成摄氏温度.某种拖拉机的油箱可储油40L,加满油并开始工作后,油箱中的剩余油量y(L)与工作时间x(h)之间为一次函数关系,函数图象如图4-15所示.(1)求y关于x的函数表达式;(2)一箱油可供拖拉机工作几小时?解这个方程组,得(2)解当剩余油量为0时,即y=0时,有-5x+40=0,解得x=8.2.已知一次函数的图象经过两点A(-1,3),B(2,-5),求这个函数的解析式.3.酒精的体积随温度的升高而增大,体积与温度之间在一定范围内近似于一次函数关系,现测得一定量的酒精在0℃时的体积为5.250L,在40℃时的体积为5.481L,求这些酒精在10℃和30℃时的体积各是多少?在10℃,即x=10时,体积y=0.005775×10+5.250=5.30775(L).中考试题(1)(2)观察图象可得.(3)用待定系数法解.结束