广义逆矩阵的求法探讨(学士论文).doc
上传人:天马****23 上传时间:2024-09-13 格式:DOC 页数:28 大小:2.5MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

广义逆矩阵的求法探讨(学士论文).doc

广义逆矩阵的求法探讨(学士论文).doc

预览

免费试读已结束,剩余 18 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

广义逆矩阵的求法探讨theseekingofthedharmaandresearchintogeneralizedinversematrixPAGEIII毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名:日期:摘要本文介绍了广义逆矩阵的定义,讨论了由Moore-Penrose方程所定义的各种广义逆的性质,在广义逆矩阵的初等变换法和满秩分解法的基础上,研究了几种特殊的广义逆矩阵的计算方法.关键词:广义逆矩阵;满秩分解;消元;初等变换法AbstractThisarticlediscussesthesystemofgeneralizedInversematricesdefined,discussedbytheMoore-PenroseequationisdefinedbythenatureofthevariousGeneralizedinverse,generalizedinversematrixelementarytransformationandfullrankdecomposition,studiedseveralparticulargeneralizedinversematrixcalculatio.Keywords:Generalizedinversematrix;fullrankdecomposition;elimination;elementarytransformation目录TOC\o"1-3"\h\z\uHYPERLINK\l"_Toc229814748"摘要PAGEREF_Toc229814748\hIAbstractHYPERLINK\l"_Toc229814749"PAGEREF_Toc229814749\hIIHYPERLINK\l"_Toc229814750"0引言PAGEREF_Toc229814750\h1HYPERLINK\l"_Toc229814751"1广义逆矩阵的概念与定理82广义逆矩阵的计算方法82.1广义逆矩阵的奇异值分解法82.2广义逆矩阵的最大值秩分解法92.2极限法求广义逆矩阵92.3广义逆矩阵的满秩分解法112.4初等变换法求广义逆矩阵15参考文献HYPERLINK\l"_Toc229814752"21HYPERLINK\l"_Toc229814752"第PAGE\*MERGEFORMAT23页,0引言矩阵逆的概念只对非奇异方阵才有意义.但是,在实际问题中,我们碰到的矩阵并不都是方阵,即使是方阵,也不都是非奇异的。因此,有必要推广逆矩阵的概念.为此,本文给出了广义逆矩阵的定义,并利用广义逆的性质,给出其计算方法。1广义逆矩阵的概念与定理定义1.1设是的矩阵,若的矩阵满足如下四个方程的全部或者一部分,则称为的广义逆矩阵,简称广义逆.(1.1)(1.2)(1.3)(1.4)则称是的逆,记为.如果某个只满足(1.1)式,为的{1}广义逆,记为G{1};如果另一个满足(1.1),(1.2)式,则称为的{1,2}广义逆,记为{1,2};如果{1,2,3,4},则是逆等.下面介绍常用的5种{1},{1,2},{1,3},{1,4},{1,2,3,4}每一种广义逆矩阵又都包含着一类矩阵,分述如下:{1}中任意一个确定的广义逆,称作减号广义逆,或g逆,记为;{1,2}中任意一个确定的广义逆,称作自反减号逆,记为;{1,3}中任意一个确定的广义逆,称作最小范数广义逆,记为;{1,4}中任意一个确定的广义逆,称作最小二乘广义逆,记为;{1,2,3,4}:唯一一个,称作加号逆,或,记为.定义1.2设是