能正确地进行弧度与角度的换算掌握任意角的正弦余弦精品PPT课件.pptx
上传人:王子****青蛙 上传时间:2024-09-10 格式:PPTX 页数:44 大小:2.9MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

能正确地进行弧度与角度的换算掌握任意角的正弦余弦精品PPT课件.pptx

能正确地进行弧度与角度的换算掌握任意角的正弦余弦精品PPT课件.pptx

预览

免费试读已结束,剩余 34 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.2.掌握任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.3.掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.4.能正确运用三角函数公式进行简单三角函数式的化简、求值和恒等式证明.5.掌握正弦定理、余弦定理,能够运用正弦定理、余弦定理等知识和方法解决一些简单的三角形度量问题.本部分内容在高考中所占分数大约占12%,主要考查三角函数的基本公式,三角恒等变形及解三角形等基本知识.近几年高考题目中每年有1~2个小题,一个大题,解答题以中低档题为主,很多情况下与平面向量综合考查,有时也与不等式、函数最值结合在一起,但难度不大,今后有关三角函数的问题仍将以选择题、填空题和解答题三种题型出现,控制在中等偏易程度;如果有解答题出现,一般放在前两题位置.解三角形的考题有客观题也有解答题,通过三角形中的边长与角度之间的数量关系,来解决一些与测量和几何计算等有关的实际问题,考查考生对数学与现实世界和实际生活的联系的认识,培养和发展考生的数学应用意识.7.解三角形(1)已知两角及一边,利用正弦定理求解;(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一;(3)已知两边及其夹角,利用余弦定理求解;(4)已知三边,利用余弦定理求解.[分析]先化切为弦,再将所求式化简,化简时注意所求角与已知角之间的关系.[评析]利用两角和与差的三角函数及倍半公式进行恒等变式时,要合理地应用公式,注意角的变化,函数名的变化和函数结构的变化.[例3]在△ABC中,acosA+bcosB=ccosC,试判断三角形的形状.[分析]利用正、余弦定理进行边角互化.[解析]解法一:由正弦定理知a=2RsinA,b=2RsinB,c=2RsinC.代入已知条件得sinAcosA+sinBcosB=sinCcosC,∴sin2A+sin2B=sin2C.∴sin[(A+B)+(A-B)]+sin[(A+B)-(A-B)]=2sinCcosC,∴2sin(A+B)cos(A-B)+2sin(A+B)cos(A+B)=0,∵sin(A+B)≠0,∴cos(A-B)+cos(A+B)=0.∵2cosAcosB=0.∴cosA=0,或cosB=0,即A=90°,或B=90°.∴△ABC是直角三角形.去分母得a2(b2+c2-a2)+b2(a2+c2-b2)+c2(c2-a2-b2)=0,整理得(a2-b2)2=c4,∴a2-b2=±c2,∴a2=b2+c2,或b2=a2+c2.由勾股定理知△ABC是直角三角形.[评析](1)判断三角形的形状,主要有两条思路:一是化角为边,二是化边为角.(2)若等式两边是关于三角形的边或内角正弦函数齐次式,则可以根据正弦定理进行相互转化.如asinA+bsinB=csinC⇔a2+b2=c2⇔sin2A+sin2B=sin2C.在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.[分析]本题主要考查三角变换、正弦定理、余弦定理等基础知识,同时考查运算求解能力,一般思路,利用余弦定理、正弦定理,将边角统一.[评析]正、余弦定理是把边角关系进行转化的重要依据,所以,解三角形问题一般都可以利用角或边两种方法解决;另外,三角形面积有多种表达方式,在解决问题中要根据题目特点是灵活选择.