高考文科立体几何题汇总(含答案).doc
上传人:sy****28 上传时间:2024-09-14 格式:DOC 页数:6 大小:3.5MB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

高考文科立体几何题汇总(含答案).doc

高考文科立体几何题汇总(含答案).doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

19.(本小题满分12分)2008ABCMPD如图,在四棱锥中,平面平面,,是等边三角形,已知,.(Ⅰ)设是上的一点,证明:平面平面;(Ⅱ)求四棱锥的体积.18.(本小题满分12分)2009EABCFE1A1B1C1D1D如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4,BC=CD=2,AA=2,E、E分别是棱AD、AA的中点.设F是棱AB的中点,证明:直线EE//平面FCC;证明:平面D1AC⊥平面BB1C1C.2010(20)(本小题满分12分)在如图所示的几何体中,四边形是正方形,,,分别为、的中点,且.(Ⅰ)求证:平面;(Ⅱ)求三棱锥.201119.(本小题满分12分)如图,在四棱台中,平面,底面是平行四边形,,,60°(Ⅰ)证明:;(Ⅱ)证明:.2012(19)(本小题满分12分)如图,几何体是四棱锥,△为正三角形,.(Ⅰ)求证:;(Ⅱ)若∠,M为线段AE的中点,求证:∥平面.200819.(Ⅰ)证明:在中,由于,,,ABCMPDO所以.故.又平面平面,平面平面,平面,所以平面,又平面,故平面平面.(Ⅱ)解:过作交于,由于平面平面,所以平面.因此为四棱锥的高,又是边长为4的等边三角形.因此.在底面四边形中,,,所以四边形是梯形,在中,斜边边上的高为,此即为梯形的高,所以四边形的面积为.故.EABCFE1A1B1C1D1DF1200918题、证明:(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1,连接A1D,C1F1,CF1,因为AB=4,CD=2,且AB//CD,所以CDeq\o(=,\s\up8(//))A1F1,A1F1CD为平行四边形,所以CF1//A1D,又因为E、E分别是棱AD、AA的中点,所以EE1//A1D,EABCFE1A1B1C1D1D所以CF1//EE1,又因为平面FCC,平面FCC,所以直线EE//平面FCC.(2)连接AC,在直棱柱中,CC1⊥平面ABCD,AC平面ABCD,所以CC1⊥AC,因为底面ABCD为等腰梯形,AB=4,BC=2,F是棱AB的中点,所以CF=CB=BF,△BCF为正三角形,,△ACF为等腰三角形,且所以AC⊥BC,又因为BC与CC1都在平面BB1C1C内且交于点C,所以AC⊥平面BB1C1C,而平面D1AC,所以平面D1AC⊥平面BB1C1C.2010(20)本小题主要考查空间中的线面关系,考查线面垂直、面面垂直的判定及几何体体积的计算,考查试图能力和逻辑思维能力。满分12分。(I)证明:由已知所以又,所以因为四边形为正方形,所以,又,因此在中,因为分别为的中点,所以因此又,所以.(Ⅱ)解:因为,四边形为正方形,不妨设,则,所以·由于的距离,且所以即为点到平面的距离,三棱锥所以201119.(I)证法一:因为平面ABCD,且平面ABCD,所以,又因为AB=2AD,,在中,由余弦定理得,所以,因此,又所以又平面ADD1A1,故证法二:因为平面ABCD,且平面ABCD,所以取AB的中点G,连接DG,在中,由AB=2AD得AG=AD,又,所以为等边三角形。因此GD=GB,故,又所以平面ADD1A1,又平面ADD1A1,故(II)连接AC,A1C1,设,连接EA1因为四边形ABCD为平行四边形,所以由棱台定义及AB=2AD=2A1B1知A1C1//EC且A1C1=EC,所以边四形A1ECC1为平行四边形,因此CC1//EA1,又因为EA平面A1BD,平面A1BD,所以CC1//平面A1BD。2012(19)(I)设中点为O,连接OC,OE,则由知,,又已知,所以平面OCE.所以,即OE是BD的垂直平分线,所以.(II)取AB中点N,连接,∵M是AE的中点,∴∥,∵△是等边三角形,∴.由∠BCD=120°知,∠CBD=30°,所以∠ABC=60°+30°=90°,即,所以ND∥BC,所以平面MND∥平面BEC,故DM∥平面BEC.