2017年中考数学考点学案:专题16+与圆有关的概念.doc
上传人:光誉****君哥 上传时间:2024-09-11 格式:DOC 页数:14 大小:453KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2017年中考数学考点学案:专题16+与圆有关的概念.doc

2017年中考数学考点学案:专题16+与圆有关的概念.doc

预览

免费试读已结束,剩余 4 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2018年中考数学考点学案精心整编吐血推荐,如若有用请打赏支持,感激不尽!考点十六:与圆有关的概念聚焦考点☆温习理解1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。2、弦连接圆上任意两点的线段叫做弦。(如图中的AB)3.直径经过圆心的弦叫做直径。(如图中的CD)直径等于半径的2倍。4.半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。5.弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)5、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。推论2:圆的两条平行弦所夹的弧相等。6、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。7、弦心距从圆心到弦的距离叫做弦心距。名师点睛☆典例分类考点典例一、垂径定理【例1】如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6B.5C.4D.3【答案】B.考点:1.垂径定理;2.勾股定理.【点睛】过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.【举一反三】(2015遂宁)如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cmB.4cmC.5cmD.6cm【答案】B.考点:1.垂径定理;2.勾股定理.考点典例二、求边心距【例2】(2015达州)已知正六边形ABCDEF的边心距为cm,则正六边形的半径为cm.【答案】2.【解析】试题分析:如图所示,连接OA、OB,过O作OD⊥AB,∵多边形ABCDEF是正六边形,∴∠OAD=60°,∴OD=OA•sin∠OAB=AO=,解得:AO=2.故答案为:2.考点:正多边形和圆.【点睛】作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径.【举一反三】如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A.B.C.4D.3【答案】D.考点:1.圆周角定理;2.全等三角形的判定和性质;3.垂径定理;4.三角形中位线定理.【分析】如答图,过点A作AH⊥BC于H,作直径CF,连接BF,∵∠BAC+∠EAD=180°,∠BAC+∠BAF=180°,∴∠DAE=∠BAF.在△ADE和△ABF中,∵,∴△ADE≌△ABF(SAS).∴DE=BF=6.∵AH⊥BC,∴CH=BH.又∵CA=AF,∴AH为△CBF的中位线.∴AH=BF=3.故选D.考点典例三、最短路线问题【例3】如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为()A.B.1C.2D.2【答案】A.故选A.【点睛】本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键.【举一反三】如图,AB、CD是⊙O两条弦,AB=8,CD=6,MN是直径,AB⊥MN于E,CD⊥MN于点F,P为EF上任意一点,,则PA+PC的最小值为▲.【答案】.【解析】由于A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值.因此,如答图,连接BC,OB,OC,过点C作CH垂直于AB于H.∵AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,∴BE=AB=4,CF=CD=3.∴.∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7.在Rt△BCH中根据勾股定理得到,即PA+PC的最小值为.课时作业☆能力提升一.选择题