高中向量的教案.docx
上传人:念珊****写意 上传时间:2024-09-14 格式:DOCX 页数:14 大小:18KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

高中向量的教案.docx

高中向量的教案.docx

预览

免费试读已结束,剩余 4 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中向量的教案高中向量的教案在教学工作者实际的教学活动中,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编整理的高中向量的教案,欢迎阅读,希望大家能够喜欢。高中向量的教案1一、总体设想:本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。二、教学目标:了解向量的数量积的抽象根源。了解平面的数量积的概念、向量的夹角数量积与向量投影的关系及数量积的几何意义理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算三、重、难点:【重点】平面向量数量积的概念和性质平面向量数量积的运算律的探究和应用【难点】平面向量数量积的应用四、课时安排:2课时五、教学方案及其设计意图:平面向量数量积的物理背景平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。首先说明放置在水平面上的物体受力F的`作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F的所做的功为W,这里的(是矢量F和s的夹角,也即是两个向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a,b的数量积的概念。平面向量数量积(内积)的定义已知两个非零向量a与b,它们的夹角是θ,则数量|a高中向量的教案2教材分析:教科书以物体受力做功为背景,引出向量数量积的概念,功是一个标量,它用力和位移两个向量来定义,反应在数学上就是向量的数量积。向量的数量积是过去学习中没有遇到过的一种新的乘法,与数的乘法既有区别又有联系。教科书通过“探究”,要求学生自己利用向量的数量积定义推导有关结论。这些结论可以看成是定义的直接推论。教材例一是对数量积含义的直接应用。学情分析:前面已经学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积,教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到数量积与向量模的大小有及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。三维目标:(一)知识与技能1、学生通过物理中“功”等实例,认识理解平面向量数量积的含义及其物理意义,体会平面向量数量积与向量投影的关系。2、学生通过平面向量数量积的3个重要性质的探究,体会类比与归纳、对比与辨析等数学方法,正确熟练的应用平面向量数量积的定义、性质进行运算。(二)过程与方法1、学生经历由实例到抽象到抽象的的数学定义的形成过程,性质的发现过程,进一步感悟数学的本质。(三)情感态度价值观1、学生通过本课学习体会特殊到一般,一般到特殊的数学研究思想。2、通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力。四、教学重难点:1、重点:平面向量数量积的概念、性质的发现论证;2、难点:平面向量数量积、向量投影的理解;五、教具准备:多媒体、三角板六、课时安排:1课时七、教学过程:(一)创设问题情景,引出新课问题:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?新课引入:本节课我们来研究学习向量的另外一种运算:平面向量的数量积的物理背景及其含义新课:1、探究一:数量积的概念展示物理背景:视频“力士拉车”,从视频中抽象出下面的物理模型背景的第一次分析:问题:真正使汽车前进的力是什么?它的'大小是多少?答:实际上是力在位移方向上的分力,即,在数学中我们给它一个名字叫投影。“投影”的概念:作图定义:||cos(叫做向量在方向上的投影。投影也是一个数量,不是向量;2、背景的第二次分析:问题:你能用文字语言表述“功的计算公式”吗?分析:用文字语言表示即:力对物体所做的功,等于力的大小、位移的大小、力与位移夹角的余弦这三者的乘积;功是一个标量,它由力和位移两个向量来确定。这给我们一种启示,能否把“功”看成是这两个向量的一种运算结果呢?平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,则数量|高中向量的教案3|cosθ,其中θ是与的夹角。规定:零向量与任一向量的数量积为0,即=0注意:(1)符号“”在向量运算中既不能省略,也不能用“×”代替。(2)是与的夹角,范围是0≤θ≤π,(再找两向量夹角时,若两向量起点不同,必须通过平移,把起点移到同一点,再找夹角)。(3)两个向量的数量积是一个数量,而不是向量。而且这个数量的