第4章 统计假设检验与参数估计2010.ppt
上传人:qw****27 上传时间:2024-09-12 格式:PPT 页数:145 大小:2.9MB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

第4章 统计假设检验与参数估计2010.ppt

第4章统计假设检验与参数估计2010.ppt

预览

免费试读已结束,剩余 135 页请下载文档后查看

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第四章统计假设检验与参数估计假设检验又叫显著性检验(testofsignificance)。显著性检验的方法很多,常用的有u检验、t检验、F检验和2检验等。尽管这些检验方法的用途及使用条件不同,但其检验的基本原理是相同的。参数估计有点估计(pointestimation)和区间估计(intervalestimation)。例1:某一酿造厂新引进一种酿醋曲种,以原曲种为对照进行试验。已知原曲种酿出的食醋醋酸含量平均为μ0=9.75%,其标准差为σ=5.30%。现采用新曲种酿醋,得到30个醋样,测得其醋酸含量平均为=11.99%。试问,能否由这30个醋样的平均数判断新曲种好于原曲种?例2:A,B两种肥料,在相同条件下各施用于5个小区的水稻上,水稻产量平均分别为,二者相差20kg,那么20kg差异究竟是由于两种肥料的不同而造成的还是由试验的随机误差造成的?以上这几种问题的判断均是由样本去推断总体的,属于统计假设检验问题,均是来判断数据差异、分布差异是由处理引起,还是由于随机误差引起的。通过试验测定得到的每个观测值,既由被测个体所属总体的特征决定,又受其它诸多无法控制的随机因素的影响。所以观测值由两部分组成,即=+总体平均数反映了总体特征,表示试验误差。若样本含量为n,则可得到n个观测值:,,,。于是样本平均数试验表面效应为同理,对于接受不同处理的两个样本来说,则有:=+,=+这说明两个样本平均数之差(-)也包括了两部分:一部分是两个总体平均数的差(-),叫做试验的处理效应(treatmenteffect);另一部分是试验误差(-)。也就是说样本平均数之差(-)包含有试验误差,它只是试验的表面效应。因此,仅凭(-)就对总体平均数、是否相同下结论是不可靠的。只有通过显著性检验才能从(-)中提取结论。对(-)进行显著性检验就是要分析:试验的表面效应(-)主要由处理效应(-)引起的,还是主要由试验误差所造成。处理效应(-)未知,但试验的表面效应是可以计算的,借助数理统计方法可以对试验误差作出估计。所以,可从试验的表面效应与试验误差的权衡比较中间接地推断处理效应是否存在。下一张下一张如前例,原假设H0:,即假设由新曲种酿造出的食醋的醋酸含量与原菌种酿造的食醋醋酸含量相等,这个假设表明采用新曲种酿造食醋对提高醋酸含量是无效的,试验的表面效应是随机误差引起的。对于来自两个总体的两个样本,原假设H0:,即两个总体的平均数相等,处理效应为零,试验表面效应仅由误差引起,处理效应不存在。2.在无效假设成立的前提下,构造合适的统计量,并由该统计量的抽样分布计算样本统计量的概率。对前例分析,无效假设H0:成立,试验的表面效应是随机误差引起的。那么,可以把试验中所获得的看成是从总体中抽取的一个样本平均数,由样本平均数的抽样分布理论可知,由样本值计算统计量u值,本例计算出的统计量u=2.315,1.96<<2.58,所以可推知其概率在统计学上,把小概率事件在一次试验中看成是实际上不可能发生的事件,称为小概率事件实际不可能原理。根据这一原理,当试验的表面效应是试验误差的概率小于0.05时,可以认为在一次试验中试验表面效应是试验误差实际上是不可能的,因而否定原先所作的无效假设H0,接受备择假设HA,即认为试验的处理效应是存在的。当试验的表面效应是试验误差的概率大于0.05时,则说明无效假设成立的可能性大,不能被否定,因而也就不能接受备择假设。叫做均数差异标准误;n1、n2为两样本的含量。根据两个样本的数据,计算得:-=11-9.2=1.8;进一步估计|t|≥2.426的两尾概率,即估计P(|t|≥2.426)是多少?查附表3,在df=(n1-1)+(n2-1)=18时,两尾概率为0.05的临界值:两尾概率为0.01的临界t值:由两样本数据计算所得的t值为2.426,介于两个临界t值之间,即:t0.05<2.426<t0.01所以,|t|≥2.426的概率P介于0.01和0.05之间,即:0.01<P<0.05。如图所示,|t|≥2.426的两尾概率,说明无效假设成立的可能性,即试验的表面效应为试验误差引起的可能性在0.01─0.05之间。按所建立的:=,试验的表面效应是试验误差的概率在0.01─0.05之间,小于0.05,故有理由否定:=,从而接受:≠。可以认为两个总体平均数和不相同。综上所述,显著性检验,从提出无效假设与备择假设到根据小概率事件实际不可能性原理来否定或接受无效假设,这一过程实际上是应用所谓“概率性质的反证法”对试验样本所属总体所作的无效假设的统计推断。在统计假设检验中,否定或接受无效假设的依据是“小概率事件实际不可能性原理”。用来确定否定或接受无效假设的概率标准叫显著水平(significanceleve