如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
4.1概述在高等数学中,对于常微分方程的求解,给出了一些典型方程求解析解的基本方法,如可分离变量法、常系数齐次线性方程的解法、常系数非齐次线性方程的解法等。但能求解的常微分方程仍然是有限的,大多数的常微分方程是不可能给出解析解的。譬如:从实际问题当中归纳出来的微分方程,通常主要依靠数值解法来解决。本章主要讨论一阶常微分方程初值问题4.2数值方法的基本思想对常微分方程初值问题(4.1)式的数值解法,就是要算出精确解y(x)在区间a,b上的一系列离散节点处的函数值的近似值。相邻两个节点的间距称为步长,步长可以相等,也可以不等。本章总是假定h为定数,称为定步长,这时节点可表示为数值解法需要把连续性的问题加以离散化,从而求出离散节点的数值解。对常微分方程数值解法的基本出发点就是离散化。其数值解法有两个基本特点,它们都采用“步进式”,即求解过程顺着节点排列的次序一步一步地向前推进,描述这类算法,要求给出用已知信息计算的递推公式。建立这类递推公式的基本方法是在这些节点上用数值积分、数值微分、泰勒展开等离散化方法,对初值问题中的导数进行不同的离散化处理。对于初值问题的数值解法,首先要解决的问题就是如何对微分方程进行离散化,建立求数值解的递推公式。递推公式通常有两类,一类是计算yi+1时只用到xi+1,xi和yi,即前一步的值,因此有了初值以后就可以逐步往下计算,此类方法称为单步法;其代表是龙格—库塔法。另一类是计算yi+1时,除用到xi+1,xi和yi以外,还要用到,即前面k步的值,此类方法称为多步法;其代表是亚当斯法。4.3欧拉(Euler)折线法4.3.1Euler公式欧拉(Euler)方法是解初值问题的最简单的数值方法。初值问题的解y=y(x)代表通过点的一条称之为微分方程的积分曲线。积分曲线上每一点的切线的斜率等于函数在这点的值。(其斜率为),与x=x1直线相交于P1点(即点(x1,y1)),得到y1作为y(x1)的近似值。当时,得:从图形上看,就获得了一条近似于曲线y=y(x)的折线。通常取(常数),则Euler法的计算格式为:例4.1用欧拉法解初值问题