二次函数 (3).doc
上传人:qw****27 上传时间:2024-09-10 格式:DOC 页数:6 大小:23KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

二次函数 (3).doc

二次函数(3).doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

二次函数第一课时一、教学目标:知识技能:1.探索并归纳二次函数的定义;2.能够表示简单变量之间的二次函数关系.过程与方法:1.感悟新旧知识间的关系,让学生更深地体会数学中的类比思想方法;2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.情感态度价值观:1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.三、教学重点、难点:教学重点:1.经历探索和表示二次函数关系的过程,获得二次函数的定义。2.能够表示简单变量之间的二次函数关系.教学难点:经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验.四、教学方法:教师引导——自主探究——合作交流。五:教具、学具:教学课件六、教学媒体:计算机、实物投影。七、教学过程:[活动1]复习旧知识,引出课题。师:对于“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?生:学过正比例函数,一次函数,反比例函数.师:那函数的定义是什么,大家还记得吗?生:记得,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.师:能把学过的函数回忆一下吗?生:可以。一次函数y=kx+b(其中k、b是常数,且k≠0)正比例函数y=kx(k是不为0的常数)反比例函数y=k/x(k是不为0的常数)师:学习这些函数的时候,大家还记得我们从哪几个方面探究的吗?生:定义、函数的一般形式、函数的图像和性质、函数在实际问题中的应用、函数与方程与不等式的关系等。师:很好,从上面的几种函数来看,每一种函数都有一般的形式.那么二次函数的一般形式究竟是什么呢?本节课我们将揭开它神秘的面纱.师生行为:教师提出问题,指名回答,师生共同回顾旧知,教师做出适当总结和评价。教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,对于一些概括性较强的问题,教师要进行适当引导。设计意图:由复习回顾旧知识入手,通过回顾已经学过的函数的相关知识,对要探究的新的函数有个明确的方向,让学生由旧知识中寻找新知识的生长点,符合认识新事物的规律,由浅入深,由表及里,逐渐深化。[活动2]创设情境探究新知:问题1.正方体六个面是全等的正方形,设正方形棱长为x,表面积为y,则y关于x的关系式为是什么?2.多边形的对角线数d与边数n有什么关系?n边形有___个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可作____条对角线。因此,n边形的对角线总数d=______。3.某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?这种产品的原产量是20件,一年后的产量是件,再经过一年后的产量是件,即两年后的产量为。4.问题2中有哪些变量?其中哪些是自变量?大家根据刚才的分析,判断一下式子中的d是否是n的函数?若是函数,与原来学过的函数相同吗?问题3呢?5.观察上面的三个函数,从解析式看有什么共同点?师生行为:教师在大屏幕上逐一提出问题,问题1、2、3让学生独立思考完成师生共同订正,问题4、5小组讨论完成,教师做适当的引导,点拨,得出问题结论。定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数。教师重点关注:1.强调几个注意的问题:(1)等号左边是变量y,右边是关于自变量x的整式。(2)a,b,c为常数,且a≠0;(3)等式的右边最高次数为2,可以没有一次项和常数项,但不能没有二次项。(4)x的取值范围是任意实数。2.学生在探究问题的过程中,能否优化思维过程,使解决问题的方法更准确。设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,通过问题的解决,为得出二次函数的定义做好铺垫,并让学生感受到身边的数学,激发学生学习数学的好奇心和求知欲。学生通过分析、交流,探求二次函数的概念,加深对概念的理解,为解决问题打下基础。[活动3]例题学习内化新知问题例1,下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.(1)y=3(x-1)²+1(2)y=x+k/x(3)s=3-2t²(4)y=(x+3)²-x²(5)y=-x(6)v=10Лr²例2,函数(1)m取什么值时,此函数是正比例函数?(2)m取什么值时,此函