如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1)(x,y)x0,y0;(2)(x,y)1x2y24;(3)(x,y)yx2;(4)(x,y)x2(y1)21且x2(y2)24.解(1)集合是开集,无界集;边界为{(x,y)x0或y0}.(2)集合既非开集,又非闭集,是有界集;边界为{(x,y)x2y21}{(x,y)x2y24}.(3)集合是开集,区域,无界集;边界为{(x,y)yx2}.(4)集合是闭集,有界集;边界为{(x,y)x2(y1)21}{(x,y)x2(y2)24}2.已知函数f(u,v)uv,试求f(xy,xy).解f(xy,xy)xy(xy).3.设f(x,y)x4y42xy,证明:f(tx,ty)t2f(x,y).解f(tx,ty)tx4ty42t2xyt2x4y42t2xyt2x4y42xyt2f(x,y).yx2y24.设f(x0),求f(x).xxy212yx2y2x解由于f,则fx1x2.xx15.求下列各函数的定义域:x2y2y(1)z;(2)zln(yx)arcsin;x2y2xx2y2(3)zln(xy);(4)z1;a2b2z(5)zxy;(6)uarccos.x2y2解(1)定义域为(x,y)yx;(2)定义域为(x,y)xyx;(3)定义域为(x,y)xy0,即第一、三象限(不含坐标轴);x2y2(4)定义域为(x,y)1;a2b2(5)定义域为(x,y)x0,y0,x2y;(6)定义域为(x,y,z)x2y2z20,x2y20.6.求下列各极限:x2xyy21cosx2y2(1)lim;(2)lim;(x,y)(2,0)xy(x,y)(0,0)ln(x2y21)1sin(xy)(3)lim(x2y2)sin;(4)lim;(x,y)(0,0)xy(x,y)(2,0)y1(5)lim(1xy)x;(6)lim(x2y2)exy.(x,y)(0,1)(x,y)(,)x2xyy24解:(1)limf(2,0)2;(x,y)(2,0)xy21u1cosx2y21cosu21(2)limlimlim;(x,y)(0,0)ln(x2y21)u0ln(1u)u0u211(3)因为lim(x2y2)0,且sin1有界,故lim(x2y2)sin0;(x,y)(0,0)xy(x,y)(0,0)xysin(xy)sin(xy)(4)limlimx212;(x,y)(2,0)y(x,y)(2,0)xy11y(5)lim(1xy)xlim(1xy)xye1e;(x,y)(0,1)(x,y)(0,1)(x2y2)(xy)2(6)当xN0,yN0时,有0,exyexyxy2u22u2而limlimlimlim0(x,y)(,)exyueuueuueu按夹逼定理得lim(x2y2)exy0.(x,y)(,)7.证明下列极限不存在:xy(1)lim;(x,y)(0,0)xyx2y,x2y20,(2)设f(x,y)x4y2limf(x,y).(x,y)(0,0)0,x2y20,证明(1)当(x,y)沿直线ykx趋于(0,0)时极限xyxkx1klimlim(x,y)(0,0)xyx0xkx1kykx与k有关,上述极限不存在.(2)当(x,y)沿直线yx和曲线yx2趋于(0,0)有x2yx2xxlimlimlim0,(x,y)(0,0)x4y2x0x4x2x0x21yxyxx2yx2x2x41limlimlim,(x,y)(0,0)x4y2x0x4x4x02x42yx2yx故函数f(x,y)在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:1(1)zln(x2y2);(2)z.y