2021-2022学年新教材高中数学 第二章 平面解析几何测评(三)训练(含解析)新人教B版选择性必修第一册.docx
上传人:Wi****m7 上传时间:2024-09-12 格式:DOCX 页数:11 大小:139KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2021-2022学年新教材高中数学 第二章 平面解析几何测评(三)训练(含解析)新人教B版选择性必修第一册.docx

2021-2022学年新教材高中数学第二章平面解析几何测评(三)训练(含解析)新人教B版选择性必修第一册.docx

预览

免费试读已结束,剩余 1 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

过关综合测评第二章测评(三)(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知椭圆M:x2+y24=λ经过点(1,2),则M上一点到两焦点的距离之和为()A.2B.22C.4D.42答案D解析由椭圆M:x2+y24=λ经过点(1,2)可得λ=2,即椭圆的方程为x22+y28=1,则a=22,由椭圆的定义可知M上一点到两焦点的距离之和为2a=42.2.(2020广东茂名期末)已知点P(-2,4)在抛物线y2=2px(p>0)的准线上,则该抛物线的焦点坐标是()A.(0,2)B.(0,4)C.(2,0)D.(4,0)答案C解析因为点P(-2,4)在抛物线y2=2px的准线上,所以-p2=-2,得p=4,则该抛物线的焦点坐标是(2,0).3.已知双曲线x29-y2m=1的一条渐近线的方程为y=23x,则双曲线的焦距为()A.13B.10C.213D.25答案C解析由题意得m3=23,得m=4,则双曲线的焦距为29+m=213.4.设抛物线y2=4x的焦点为F,准线为l,则以F为圆心,且与l相切的圆的方程为()A.(x-1)2+y2=4B.(x-1)2+y2=16C.(x-2)2+y2=16D.(x+2)2+y2=4答案A解析根据题意,抛物线y2=4x,其焦点在x轴正半轴上且p=2,则其焦点F(1,0),准线方程为x=-1,以F为圆心,且与l相切的圆的半径r=2,则该圆的方程为(x-1)2+y2=4.5.设P是双曲线x2a2-y2b2=1(a>0,b>0)上的点,F1,F2分别是双曲线的左、右焦点,双曲线的离心率是43,且∠F1PF2=90°,△F1PF2的面积是7,则a+b是()A.3+7B.9+7C.10D.16答案A解析由题意,不妨设点P是右支上的一点,|PF1|=m,|PF2|=n,则12mn=7,m-n=2a,m2+n2=4c2,ca=43,∴a=3,c=4,∴b=c2-a2=7,∴a+b=3+7.6.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则k等于()A.13B.223C.23D.23答案B解析设A(x1,y1),B(x2,y2),易知x1>0,x2>0,y1>0,y2>0.由y=k(x+2),y2=8x,得k2x2+(4k2-8)x+4k2=0,所以x1x2=4,①根据抛物线的定义得,|FA|=x1+p2=x1+2,|FB|=x2+2.因为|FA|=2|FB|,所以x1=2x2+2,②由①②得x2=1(x2=-2舍去),所以B(1,22),代入y=k(x+2)得k=223.7.我们把由半椭圆x2a2+y2b2=1(x≥0)与半椭圆y2b2+x2c2=1(x<0)合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0),如图所示,其中点F0,F1,F2是相应椭圆的焦点.若△F0F1F2是边长为1的等边三角形,则a,b的值分别为()A.72,1B.3,1C.5,3D.5,4答案A解析|OF2|=b2-c2=12,|OF0|=c=3|OF2|=32,∴b=1,∴a2=b2+c2=74,得a=72,即a=72,b=1.8.已知椭圆C1:x2a2+y2b2=1(a>b>0)与双曲线C2:x2-y24=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则()A.a2=132B.a2=13C.b2=12D.b2=2答案C解析由题意,知a2-b2=5,因此椭圆方程为(a2-5)x2+a2y2+5a2-a4=0,双曲线的一条渐近线方程为y=2x,联立方程消去y,得(5a2-5)x2+5a2-a4=0,所以直线截椭圆的弦长d=5×2a4-5a25a2-5=23a,解得a2=112,b2=12.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.当α∈π4,3π4时,方程x2sinα+y2cosα=1表示的轨迹可以是()A.两条直线B.圆C.椭圆D.双曲线答案ACD解析当α∈π4,3π4时,sinα∈22,1,cosα∈-22,22,可得方程x2sinα+y2cosα=1表示的曲线可以是椭圆(sinα>0,cosα>0),也可以是双曲线(sinα>0,cosα<0),也可以是两条直线(sinα=1,cosα=0).10.已知双曲线C:x
立即下载