如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
3.1.3概率的基本性质问题提出概率的基本性质知识探究(一):事件的关系与运算思考1:上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件?思考3:一般地,对于事件A与事件B,如何理解事件B包含事件A(或事件A包含于事件B)?特别地,不可能事件用Ф表示,它与任何事件的关系怎样约定?思考4:分析事件C1与事件D1之间的包含关系,按集合观点这两个事件之间的关系应怎样描述?思考7:事件D2称为事件C5与事件C6的并事件(或和事件),一般地,事件A与事件B的并事件(或和事件)是什么含义?思考8:类似地,当且仅当事件A发生且事件B发生时,事件C发生,则称事件C为事件A与事件B的交事件(或积事件),记作C=A∩B(或AB),在上述事件中能找出这样的例子吗?思考9:两个集合的交可能为空集,两个事件的交事件也可能为不可能事件,即A∩B=Ф,此时,称事件A与事件B互斥,那么在一次试验中,事件A与事件B互斥的含义怎样理解?在上述事件中能找出这样的例子吗?思考10:若A∩B为不可能事件,A∪B为必然事件,则称事件A与事件B互为对立事件,那么在一次试验中,事件A与事件B互为对立事件的含义怎样理解?在上述事件中能找出这样的例子吗?思考11:事件A与事件B的和事件、积事件,分别对应两个集合的并、交,那么事件A与事件B互为对立事件,对应的集合A、B是什么关系?知识探究(二):概率的几个基本性质若事件A与事件B互斥,则A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,且P(A∪B)=P(A)+P(B),这就是概率的加法公式.思考4:如果事件A与事件B互斥,那么P(A)+P(B)与1的大小关系如何?思考5:如果事件A1,A2,…,An中任何两个都互斥,那么事件(A1+A2+…+An)的含义如何?P(A1+A2+…+An)与P(A1),P(A2),…,P(An)有什么关系?思考6:对于任意两个事件A、B,P(A∪B)一定比P(A)或P(B)大吗?P(A∩B)一定比P(A)或P(B)小吗?知识迁移例2一个人打靶时连续射击两次事件“至少有一次中靶”的互斥事件是()至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶例3把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁四人,每人分得一张,那么事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.必然事件D.不可能事件P(C)=P(A∪B)=P(A)+P(B)=0.5,P(D)=1-P(C)=0.5.例5袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,已知得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、黄球、绿球的概率分别是多少?小结作业3.事件(A+B)或(A∪B),表示事件A与事件B至少有一个发生,事件(AB)或A∩B,表示事件A与事件B同时发生.