如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第四章线性规划在工商管理中的应用§1人力资源分配的问题§1人力资源分配的问题§1人力资源分配的问题§1人力资源分配的问题§2生产计划的问题§2生产计划的问题§2生产计划的问题§2生产计划的问题§2生产计划的问题§2生产计划的问题§3套裁下料问题§3套裁下料问题用“管理运筹学”软件计算得出最优下料方案:按方案1下料30根;按方案2下料10根;按方案4下料50根。即x1=30;x2=10;x3=0;x4=50;x5=0;只需90根原材料就可制造出100套钢架。注意:在建立此类型数学模型时,约束条件用大于等于号比用等于号要好。因为有时在套用一些下料方案时可能会多出一根某种规格的圆钢,但它可能是最优方案。如果用等于号,这一方案就不是可行解了。§4配料问题§4配料问题§4配料问题§4配料问题§4配料问题§4配料问题§4配料问题§4配料问题§4配料问题§5投资问题§5投资问题2)约束条件:第一年:A当年末可收回投资,故第一年年初应把全部资金投出去,于是x11+x12=200;第二年:B次年末才可收回投资,故第二年年初有资金1.1x11,于是x21+x22+x24=1.1x11;第三年:年初有资金1.1x21+1.25x12,于是x31+x32+x33=1.1x21+1.25x12;第四年:年初有资金1.1x31+1.25x22,于是x41+x42=1.1x31+1.25x22;第五年:年初有资金1.1x41+1.25x32,于是x51=1.1x41+1.25x32;B、C、D的投资限制:xi2≤30(i=1、2、3、4),x33≤80,x24≤1003)目标函数及模型:a)Maxz=1.1x51+1.25x42+1.4x33+1.55x24s.t.x11+x12=200x21+x22+x24=1.1x11;x31+x32+x33=1.1x21+1.25x12;x41+x42=1.1x31+1.25x22;x51=1.1x41+1.25x32;xi2≤30(i=1、2、3、4),x33≤80,x24≤100xij≥0(i=1、2、3、4、5;j=1、2、3、4)§5投资问题案例分析1但高峰施工期就比较难确定了,原因有两点:(1)高峰施工期各工地不是同时来到,是可以事先预测的,在同一个城市里相距不远的工地,就存在着各工地的监理工程师如何交错使用的运筹问题.(2)各工地总监在高峰施工期到来的时候要向公司要人,如果每个工地都按高峰施工期配置监理工程师的数量,将造成极大的人力资源浪费,这一点应该说主要是人为因素所造成的.因此,为了达到高峰施工期监理工程师配置数量最优,人员合理地交错使用,扼制人为因素,根据历年来的经验对高峰施工期的监理工程师数量在合理交错发挥作用的前提下限定了范围.另经统计测算得知,全年平均标准施工期占7个月,人均年成本4万元;高峰施工期占5个月,人均年成本7万元.标准施工期所需监理工程师如下表所示.另外在高峰施工期各工地所需监理工程师的数量要求如下:第1和第2工地的总人数不少于14人;第2和第3工地的总人数不少于13人;第3和第4工地的总人数不少于11人;第4和第5工地的总人数不少于10人;第5和第6工地的总人数不少于9人;第6和第7工地的总人数不少于7人;第7和第1工地的总人数不少于14人.问题:(1)高峰施工期公司最少配置多少个监理工程师?(2)监理工程师年耗费的总成本是多少?案例分析1(续)本章小节作业例2某公司由于生产需要,共需要A,B两种原料至少350吨(A,B两种材料有一定替代性),其中A原料至少购进125吨。但由于A,B两种原料的规格不同,各自所需的加工时间也是不同的,加工每吨A原料需要2个小时,加工每吨B原料需要1小时,而公司总共有600个加工小时。又知道每吨A原料的价格为2万元,每吨B原料的价格为3万元,试问在满足生产需要的前提下,在公司加工能力的范围内,如何购买A,B两种原料,使得购进成本最低?讨论:灵敏度分析与松弛变量、剩余变量100标准化Minf=2x1+3x2+0s1+0s2+0s3s.t.x1+x2+s1=350x1+s2=1252x1+x2+s3=600x1,x2,s1,s2,s3≥0最优解:x1=250,x2=100s1=0,s2=125,s3=0100例1.某工厂在计划期内要安排Ⅰ、Ⅱ两种产品的生产,已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?图解法得到最优解:x1=50,x2=250最优目标值z=27500线性规划模型标准化:引入s1,s2,s3模型化为目标函数:Maxz=50x1+100x