如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
纳米粒子制备方法纳米粒子制备方法6.1气相法制备纳米微粒气相法的加热源1.电阻加热:主要是进行低熔点金属(Ag、Al、Cu、Au等)的蒸发,产量小,常用于研究2.高频感应加热:粒子粒径均匀、产量大,高熔点低蒸气压物质的纳米微粒(W、Ta、Mo等)难制备3.激光加热:不受蒸发物质的污染,适于制备高熔点的金属纳米粒子以及各种氧化物、碳化物和氮化物等4.电子束加热:可制备高熔点金属以及相应的氧化物、碳化物、氮化物等纳米粒子,通常在高真空中使用5.微波加热:加热速度快且均匀,节能高效,易于控制,但不适用于金属材料6.电弧加热:有气中电弧和真空电弧两种6.1.1物理气相沉淀法(PVD)2.氢电弧等离子体法:微粒的生成量随等离子气体中的氢气浓度增加而上升,已制备出三十多种纳米金属(等离子体温度高)和合金,也有部分氧化物,但是要克服等离子体喷射的射流将金属熔融物质本身吹飞的技术难题3.溅射法:不需要坩锅,靶材料蒸发面积大,可制备多种金属纳米微粒及多组元的化合物纳米微粒4.通电加热蒸发法:通过碳棒与金属相接触,通电加热使金属熔化,金属与高温碳素反应并蒸发形成碳化物超微粒子,但是高熔点金属只能得到非晶态纳米微粒(熔点比碳棒高)5.流动液面上真空蒸度法:制备Ag,Au,Pd,Fe,Ni,In等超微粒子,粒径小(约3nm)可控6.1.2化学气相沉积法(CVD)2.激光诱导:利用反应气体分子(或光敏分子)对特定波长激光束的吸收,引起反应气体分子光解、热解、光敏化反应和激光诱导化学合成反应分类:由原料蒸发方式的不同,可分为等离子增强化学气相沉积法(PECVD法)和激光诱导化学气相沉积法(LICVD法)等;由反应类型不同分为热解化学气相沉积、化学合成气相沉积、化学输运反应1.热解化学气相沉积:条件是分解原料通常容易挥发,蒸气压、反应活性高。一般的反应形式为:A(气)→B(固)+C(气)↑2.化学合成气相沉积:高温下发生(激光诱导)气相反应。一般的反应形式为:A(气)+B(气)→C(固)+D(气)↑3.化学输运反应:把所需要的物质当做源物质,借助于适当的气体介质与之反应而形成一种气态化合物,这种气态化合物经化学迁移或物理载带(用载气)输运到与源区温度不同的沉淀区,再发生逆向反应,使得源物质重新沉淀出来,这样的过程称为化学输运反应。上述气体介质叫做输运剂6.2液相法制备纳米微粒6.2.1沉淀法为了获得沉淀的均匀性,通常采用反滴法;对粒径进行有效控制、防止颗粒间的絮凝团聚,通常是利用高聚物作为分散剂防止团聚2.均相沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢均匀的释放出来,通过控制溶液中沉淀剂浓度,使溶液中的沉淀处于平衡状态,且沉淀能在整个溶液中均匀地出现例如,随尿素水溶液的温度逐渐升高至70℃附近,尿素会发生分解,即(NH2)2CO+3H2O2NH4·OH+CO2生成的沉淀剂NH4·OH在金属盐的溶液中分布均匀,浓度低,使得沉淀物均匀地生成。3.直接沉淀法:在金属盐溶液中加入沉淀剂,在一定条件下生成沉淀析出,沉淀经洗涤、热分解等处理工艺后得到超细产物。操作简单,对设备要求不高,不易引入杂质,产品纯度高,但洗涤原溶液中的阴离子较难,得到的粒子粒径分布较宽4.金属醇盐水解法:利用一些金属有机醇盐能溶于有机溶剂并可能发生水解反应,生成氢氧化物或氧化物沉淀的特性来制备超细粉末的方法。产物纯度高,组成均一金属醇盐制备方法:金属与醇反应,金属卤化物与醇反应6.2.2喷雾法6.2.3水热法分类:由反应的类型可分为水热结晶法、水热合成法、水热分解法、水热氧化法、水热还原法等溶剂热法:采用有机溶剂代替水作介质,扩大了水热技术的应用范围,可制备在水溶液中无法长成,易氧化、易水解或对水敏感的材料,反应过程易于控制,粒径的大小也可以有效控制6.2.4溶胶——凝胶法溶胶-凝胶的形成过程溶胶-凝胶法在制备功能陶瓷等纳米材料方面由广泛的应用。例如:以ZrCl4和水合无机盐为原料,用此法可合成稳定的四方多晶体ZrO2粉,该粉在550℃下焙烧2小时后粒径为40nm,在高于1220℃、压力为23MPa条件下烧结1小时,烧结体密度可达理论密度;以醋酸铅、Ca(NO3)2和钛酸丁脂为原料,采用溶胶-凝胶法可成功地制备具有良好导电、压电、热释电及光学特性的(Pb,Ca)TiO3纳米粉体材料,这些颗粒呈球状、粒径为30-50nm,且分散性好6.2.5自组装法6.2.6模板法2.“软模板”法:通常为两亲性分子(表面活性剂)形成的有序聚集体,主要包括:胶束、反相微乳液、液晶等二者方法的同异:都能提供一个有限大小的反应空间,区别在于前者提供的是静态的孔道,物质只能从开口处进入孔道内部,而后者提供的则是处于动态