如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
分类计数原理与分步计数原理(2)理脉络1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有种不同的方法,在第2类办法中,有种不同的方法,……在第n类办法中,有种不同的方法,那么完成这件事共有N=++……+种不同的方法.HYPERLINK"http://www.zxxk.com"2.分步计数原理:完成一件事,需要分成n个步骤,做第1步,有种不同的方法,做第2步,有种不同的方法,……做第n步,有种不同的方法,那么完成这件事共有N=××…×种不同的方法.HYPERLINK"http://www.zxxk.com"注:分类计数原理又称加法原理HYPERLINK"http://www.zxxk.com"分步计数原理又称乘法原理HYPERLINK"http://www.zxxk.com"3.分类加法计数原理和分步乘法计数原理是排列组合问题的最基本的原理,是推导排列数、组合数公式的理论依据,也是求解排列、组合问题的基本思想.4.理解分类加法计数原理与分步乘法计数原理,并加区别分类加法计数原理针对的是“分类”问题,其中各种方法相对独立,用其中任何一种方法都可以完成这件事;而分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成后才算做完这件事.5.运用分类加法计数原理与分步乘法计数原理的注意点:分类加法计数原理:首先确定分类标准,其次满足:完成这件事的任何一种方法必属于某一类,并且分别属于不同的两类的方法都是不同的方法,即"不重不漏".分步乘法计数原理:首先确定分步标准,其次满足:必须并且只需连续完成这n个步骤,这件事才算完成.学方法例1用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数?解(1)分三步:①先选百位数字.由于0不能作百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由乘法原理知所求不同三位数共有5×5×4=100个.(2)分三步:(1)百位数字有5种选法;(ii)十位数字有6位选法;(iii)个位数字有6种选法.所求三位数共有5×6×6=180个.(3)分三步:①先选个位数字,有3种选法;②再选百位数字,有4种选法;③选十位数字也是4种选法,所求三位奇数共有3×4×4=48个.(4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个.(5)分4类:①千位数字为3,4之一时,共有2×5×4×3=120个;②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48个;③千位数字是5,百位数字是4,十位数字为0,1之一时,共有2×3=6个;④还有5420也是满条件的1个.故所求自然数共120+48+6+1=175个.说明:⑴排数字问题是最常见的一种类型,要特别注意首位不能排0.⑵第(5)题改成:可以组成多少个大于3000,小于5421的四位数?答案:588个。例2求下列集合的元素个数.(1);(2).解:(1)分7类:①,有7种取法;②,有6种取法;③,有5种取法;④,有4种取法;⑤,有3种取法;⑥,有2种取法;⑦,只有1种取法。因此共有个元素。(2)分两步:①先选,有4种可能;②再选有5种可能.由乘法原理,共有个元素。例3有四位同学参加三项不同的比赛,(1)每位同学必须参加一项竞赛,有多少种不同的结果?(2)每项竞赛只许一位学生参加,有多少种不同的结果?解:(1)每位学生有三种选择,四位学生共有参赛方法:种;(2)每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:种。例4①设,,从到共有多少个不同映射?②6个人分到3个车间,共有多少种分法?解:(1)分6步:先选的象,有3种可能,再选的象也是3种可能,…,选象也有3种可能,由乘法原理知,共有种不同映射;(2)把6个人构成的集合,看成上面(1)中之,3个车间构成的集合,看成上面的,因此,所求问题转化为映射问题,如上题所述,共有种方案。例5甲、乙、丙、丁四个人各写一张贺卡,放在一起,再各取一张不是自己所写的贺卡,共有多少种不同的取法?解:列表排出所有的分配方案,共有3+3+3=9种,或种.五、小结:应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制。补充:1.有不同的中文书9本,不同的英文书7本,不