高中高二数学教案(多篇).docx
上传人:lj****88 上传时间:2024-09-14 格式:DOCX 页数:50 大小:36KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

高中高二数学教案(多篇).docx

高中高二数学教案(多篇).docx

预览

免费试读已结束,剩余 40 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中高二数学教案(多篇)【概述】高中高二数学教案(多篇)为的会员投稿推荐,但愿对你的学习工作带来帮助。高二数学优秀教案5篇一高中数学菱形教案一、教学目标1、把握菱形的判定。2、通过运用菱形知识解决具体问题,提高分析能力和观察能力。3、通过教具的演示培养学生的学习爱好。4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1、教学重点:菱形的判定方法。2、教学难点:菱形判定方法的综合应用。四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1、叙述菱形的定义与性质。2、菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?生答:定义法。此外还有别的两种判定方法,下面就来学习这两种方法。讲解新课菱形判定定理1:四边都相等的四边形是菱形。菱形判定定理2:对角钱互相垂直的'平行四边形是菱形。图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。分析判定2:师问:本定理有几个条件?生答:两个。师问:哪两个?生答:(1)是平行四边形(2)两条对角线互相垂直。师问:再需要什么条件可证该平行四边形是菱形?生答:再证两邻边相等。(由学生口述证实)证实时让学生注重线段垂直平分线在这里的应用,师问:对角线互相垂直的四边形是菱形吗?为什么?可画出图,显然对角线,但都不是菱形。菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件。例4已知:的对角钱的垂直平分线与边、分别交于、,如图。求证:四边形是菱形(按教材讲解)。总结、扩展1、小结:(1)归纳判定菱形的四种常用方法。(2)说明矩形、菱形之间的区别与联系。2、思考题:已知:如图4△中,,平分,,,交于。求证:四边形为菱形。八、布置作业教材P159中9、10、11、13(2)九、板书设计十、随堂练习教材P153中1、2、3数学高二教案篇二我们先看下面两个问题。(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4班,汽车有2班,轮船有3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有4十2十3=9种不同的走法。一般地,有如下原理:加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,,在第n类办法中有mn种不同的方法。那么完成这件事共有N=m1十m2十十mn种不同的方法。(2)我们再看下面的问题:由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走法?这里,从A村到B村有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又有2种不同的走法。因此,从A村经B村去C村共有3X2=6种不同的走法。一般地,有如下原理:乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,,做第n步有mn种不同的方法。那么完成这件事共有N=m1m2mn种不同的方法。例1书架上层放有6本不同的数学书,下层放有5本不同的语文书。1)从中任取一本,有多少种不同的取法?2)从中任取数学书与语文书各一本,有多少的取法?解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法。根据加法原理,得到不同的取法的种数是6十5=11.答:从书架L任取一本书,有11种不同的取法。(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法。根据乘法原理,得到不同的取法的种数是N=6X5=30.答:从书架上取数学书与语文书各一本,有30种不同的方法。练习:一同学有4枚明朝不同古币和6枚清朝不同古币1)从中任取一枚,有多少种不同取法?2)从中任取明清古币各一枚,有多少种不同取法?例2:(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?解:要组成一个三