高二数学教案(精品多篇).docx
上传人:lj****88 上传时间:2024-09-14 格式:DOCX 页数:13 大小:17KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

高二数学教案(精品多篇).docx

高二数学教案(精品多篇).docx

预览

免费试读已结束,剩余 3 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高二数学教案(精品多篇)[寄语]高二数学教案(精品多篇)为的会员投稿推荐,但愿对你的学习工作带来帮助。高二数学教案篇一教学目标:1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。教学重点:体会直角坐标系的作用。教学难点:能够建立适当的直角坐标系,解决数学问题。授课类型:新授课教学模式:启发、诱导发现教学。教具:多媒体、实物投影仪教学过程:一、复习引入:情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?二、学生活动学生回顾刻画一个几何图形的位置,需要设定一个参照系1、数轴它使直线上任一点P都可以由惟一的实数x确定2、平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、确定点的位置就是求出这个点在设定的坐标系中的坐标四、数学运用例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。变式训练如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置例2已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区。试问:埋设地下管线m的计划需要修改吗?变式训练1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程例3已知Q(a,b),分别按下列条件求出P的坐标(1)P是点Q关于点M(m,n)的对称点(2)P是点Q关于直线l:x-y+4=0的对称点(Q不在直线1上)变式训练用两种以上的方法证明:三角形的三条高线交于一点。思考通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?五、小结:本节课学习了以下内容:1.平面直角坐标系的意义。2.利用平面直角坐标系解决相应的数学问题。六、课后作业:高二数学教案篇二一、课前预习目标理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征。二、预习内容1、双曲线的几何性质及初步运用。类比椭圆的几何性质。2。双曲线的渐近线方程的导出和论证。观察以原点为中心,2a、2b长为邻边的矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究1、椭圆与双曲线的几何性质异同点分析2、描述双曲线的渐进线的作用及特征3、描述双曲线的离心率的作用及特征4、例、练习尝试训练:例1。求双曲线9y2—16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。解:解:5、双曲线的第二定义1)。定义(由学生归纳给出)2)。说明(七)小结(由学生课后完成)将双曲线的几何性质按两种标准方程形式列表小结。作业:1。已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。(1)16x2—9y2=144;(2)16x2—9y2=—144。2。求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;曲线的方程。点到两准线及右焦点的距离。高二数学优秀教案5篇三高中数学必修教案一、教学过程1、复习。反函数的概念、反函数求法、互为反函数的函数定义域值域的关系。求出函数y=x3的反函数。2、新课。先让学生用几何画板画出y=x3的图象,学生纷纷动手,很快画出了函数的图象。有部分学生发出了“咦”的一声,因为他们得到了如下的图象(图1):教师在画出上述图象的学生中选定生1,将他的屏幕内容通过教学系统放到其他同学的屏幕上,很快有学生作出反