如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
习题课直线的方程一、选择题(每个5分,共30分)1.经过下列两点的直线,其倾斜角是钝角的是()A.(eq\f(3,2),5),(0,0)B.(1,-1),(2,4)C.(2,1),(-1,-eq\r(3))D.(eq\r(3),-2),(2,-eq\r(5))答案:D解析:tanα=eq\f(-2--\r(5),\r(3)-2)=eq\f(2-\r(5),2-\r(3))<0.2.直线y=-x+b一定经过()A.第一、三象限B.第二、四象限C.第一、二、四象限D.第二、三、四象限答案:B解析:由斜率k=-1知倾斜角为135°,直线必经过第二、四象限.3.无论m、n取何实数,直线(3m-n)x+(m+2n)y-n=0都过一定点P,则P点坐标为()A.(-1,3)B.(-eq\f(1,2),eq\f(3,2))C.(-eq\f(1,5),eq\f(3,5))D.(-eq\f(1,7),eq\f(3,7))答案:D解析:直线(3m-n)x+(m+2n)y-n=0整理为m(3x+y)-n(x-2y+1)=0,解方程组eq\b\lc\{\rc\(\a\vs4\al\co1(3x+y=0,,x-2y+1=0,))得交点坐标为(-eq\f(1,7),eq\f(3,7)).因此无论m,n取何实数直线必经过点(-eq\f(1,7),eq\f(3,7)).4.若点P(3,4)和点Q(a,b)关于直线x-y-1=0对称,则()A.a=1,b=-2B.a=2,b=-1C.a=4,b=3D.a=5,b=2答案:D解析:由题意,知eq\b\lc\{\rc\(\a\vs4\al\co1(\f(b-4,a-3)=-1,\f(a+3,2)-\f(b+4,2)-1=0)),解得eq\b\lc\{\rc\(\a\vs4\al\co1(a=5,b=2)),故选D.5.直线l先沿y轴正方向平移m个单位(m≠0,m≠1),再沿x轴负方向平移m-1个单位后得到直线l′,若l和l′重合,则直线l的斜率为()A.eq\f(1-m,m)B.eq\f(m-1,m)C.eq\f(m,1-m)D.eq\f(m,m-1)答案:C解析:设A(a,b)是l上一点,依题意可得A′[a-(m-1),b+m]∈l,所以l的斜率k=eq\f(b+m-b,a-m-1-a)=eq\f(m,1-m).6.经过点(2,0),且与坐标轴围成的三角形面积为3的直线方程为()A.eq\f(x,3)±eq\f(y,2)=1B.eq\f(x,6)±eq\f(y,3)=1C.eq\f(x,2)±eq\f(y,3)=1D.eq\f(x,2)±eq\f(y,6)=1答案:C解析:直线与坐标轴围成的三角形面积为3,且过点(2,0),则在y轴上的截距为±3,直线方程为eq\f(x,2)±eq\f(y,3)=1.二、填空题(每个5分,共15分)7.已知直线l1:(t+2)x+(1-t)y=1与l2:(t-1)x+(2t+3)y+2=0互相垂直,则t的值为________.答案:-1或1解析:①若l1的斜率不存在,此时t=1,l1的方程为x=eq\f(1,3),l2的方程为y=-eq\f(2,5),显然l1⊥l2,符合条件;若l2的斜率不存在,此时t=-eq\f(3,2),易知l1与l2不垂直.②当l1,l2的斜率都存在时,直线l1的斜率k1=-eq\f(t+2,1-t),直线l2的斜率k2=-eq\f(t-1,2t+3),∵l1⊥l2∴k1·k2=-1,即eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(t+2,1-t)))·eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(t-1,2t+3)))=-1,所以t=-1.综上可知t=-1或t=1.8.过点P(2,-1)且与原点距离为2的直线l的方程为________.答案:x=2或3x-4y-10=0解析:①当直线l的斜率不存在时,直线l的方程为x=2,符合题意.②当直线l的斜率k存在时,设l:y+1=k(x-2),即kx-y-2k-1=0.由点到直线的距离公式,得eq\f(|-2k-1|,\r(1+k2))=2,∴k=eq\f(3,4),∴l:3x-4y-10=0.故直线l的方程为x=2或3x-4y-10=0.9.已知两直线a1x+b1y+1=0和a2x+b2y+1=0都通过点P(2,3),