方差分析-本科毕业论文.doc
上传人:天马****23 上传时间:2024-09-12 格式:DOC 页数:12 大小:2.7MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

方差分析-本科毕业论文.doc

方差分析-本科毕业论文.doc

预览

免费试读已结束,剩余 2 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第页本科学生毕业论文方差分析作者院(系)专业年级学号指导老师日期方差分析摘要:方差分析是从观察变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量.本文根据不同需要把某变量方差分解为不同的部分,比较它们之间的大小并用检验进行显著性检验的方法,并且用excel解决了一些问题.关键词:单因素方差分析;双因素方差分析;组间方差;组内方差;统计量1方差分析问题的提出假设检验主要是检验两总体的均值是否差异显著,对于多个总体均值是否差异显著的问题,如果按照每一对总体进行一次检验,显然要花费很多时间,而方差分析能一次性地检验多个总体均值是否存在显著差异.因此,方差分析所提供的处理方法比两两比较的处理方法要方便很多.例1:取一批由同种原料织成的布,用不同的染整工艺进行缩水实验,以考察不同的染整工艺对布的缩水率有无显著影响,进而可以寻找出缩水率较小的染整工艺.现有~五种不同的工艺,在每一工艺下重复处理四块布,测得其缩水率数据如下表所示,试问五种不同的染整工艺的平均缩水率有无显著差异?表1染整工艺缩水率4.36.85.26.56.16.34.24.16.58.38.68.29.38.77.210.19.58.811.48.9例2:在饲料养鸡增肥的研究中,某研究所提出三种饲料配方:是以鱼粉为主的饲料是以槐树粉为主的饲料,是以苜蓿粉为主的饲料.为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量,试验结果如下所示:表2饲料鸡重/g107310091060100110021012100910281107109299011091090107411221001109310291080102110221032102910482基本概念指标:衡量试验条件好坏的变量称为指标,用y表示,它是一个随机变量.在例1中,缩水率就是试验指标.因子:在试验中影响指标y的因素称为因子,它们常用大写字母、、等来表示.在例1中染整工艺对指标——缩水率有影响,因此染整工艺就是因子,记为水平:在试验中因子所处的状态称为因子的水平,用表示因子的字母加下标来表示,譬如因子的水平用等来表示.在例1中有五种染整工艺,这便是染整工艺这一因子五个水平,分别记为试验条件(也称处理):在单因子试验中,每个水平就是一个处理,在多因子试验中,每个因子取一个特定的水平,这些特定水平的组合称其为一个试验条件,又称为一个处理.3基本假定从最简单的单因子试验问题着手,介绍在方差分析中所作的假定.假定因子有个水平,记为在水平下指标值的全体便构成一个总体,共有个总体.我们有如下假定:(1)假定第个总体服从正态分布,其均值为,(2)每一总体的方差相等,记为;(3)从第个总体获得一个容量为的样本为,且这个样本相立.在上述三个假定下,比较各个总体的均值是否相同的问题,即要检验如下假设不全相等,检验这一对假设的统计方法便是方差分析.当拒绝时,表示不同水平下的指标的均值有显著差异,此时称因子是显著的,否则称因子不显著.4统计模型按假定有,因此可以认为观察值与其均值的差是随机误差,从而有如下数据结构式:由及各个相互独立,可知各相互独立,且都服从.因此可以给出如下的单因子方差分析统计的模型:在该模型下检验的假设是:,为了推广到两因子及多因子方差分析方便起见,引入一般平均与效应的概念,如记各均值的平均为:称为一般平均,或称为总平均,又记它表示从水平的均值中除去总均值后特有的贡献,称为水平的效应,它可正可负,容易看出,诸受到约束:这样一来,统计模型可改写为,在该模型下检验的假设可以改写为:5基本思想5.1平方和分解众所周知,各数据的差异程度(即波动大小)可用它们的总偏差平方和(简称总平方和)去度量:,其中为自由度.引起数据波动的原因不外有如下两个:(1)由于因子的不同水平引起的,当原假设不真时,各个水平下指标的均值(简称水平均值)不同,诸样本均值间的差异程度可用如下的偏差平方和去度量:这里乘以是为每个水平进行了次试验.这个平方和称为组间偏差平方和,又称为因子偏差平方和,简称因子平方和.(2)由于试验存在随机误差,即使在同一水平下获得的数据也会有差异,这是除因子水平外的一切原因引起的,我们将它们归结为随机误差,可以用组内偏差平方和(也称为误差平方和)表示:由于考虑到交叉乘积项之和为0,故有如下总平方和分解式:5.2均方(平均偏差平方和)与比偏差平方和Q的大小与数据个数(自由度)有关,一般说来,数据越多,其偏差平方和越大.为了便于在偏差平方和间进行比较,统计上引入了均方和的概念,它定义为,其意为平均每个自由度上有多少平方和,它比较好地度量了一组